|
|
|
Publications in Math-Net.Ru |
Citations |
|
2020 |
| 1. |
S. G. Kobelkov, V. I. Piterbarg, I. V. Rodionov, E. Hashorva, “On the maximum of a Gaussian process with unique maximum point of its variance”, Fundam. Prikl. Mat., 23:1 (2020), 161–174 ; J. Math. Sci., 262:4 (2022), 504–513 |
2
|
|
2018 |
| 2. |
S. G. Kobelkov, “Ruin probability for a Gaussian process with variance attaining its maximum on discrete sets”, Fundam. Prikl. Mat., 22:3 (2018), 83–90 ; J. Math. Sci., 254:4 (2021), 504–509 |
|
2011 |
| 3. |
S. G. Kobel'kov, “Limit theorem for the moment of ruin for integrated Gaussian stationary process with power function as profit”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2011, no. 4, 3–11 |
|
2007 |
| 4. |
Yu. N. Karamzin, S. V. Polyakov, I. V. Popov, G. M. Kobel'kov, S. G. Kobel'kov, Jun Ho Choy, “Numerical simulation of nucleation and migration voids in interconnects of electrical circuits”, Mat. Model., 19:10 (2007), 29–43 |
|
2006 |
| 5. |
S. G. Kobel'kov, “Excursions of a Gaussian process with variable variance above a barrier increasing to infinity”, Mat. Zametki, 80:3 (2006), 386–394 ; Math. Notes, 80:3 (2006), 372–379 |
|
2005 |
| 6. |
S. G. Kobel'kov, “On the ruin problem with power losses for a Gaussian stationary process”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2005, no. 6, 23–29 |
|
2004 |
| 7. |
S. G. Kobel'kov, “The ruin problem for the stationary Gaussian process”, Teor. Veroyatnost. i Primenen., 49:1 (2004), 171–178 ; Theory Probab. Appl., 49:1 (2005), 155–163 |
5
|
|
| Presentations in Math-Net.Ru |
|
|
| Organisations |
|
|