Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Berberian, Samvel Levonovich

Statistics Math-Net.Ru
Total publications: 14
Scientific articles: 14

Number of views:
This page:3346
Abstract pages:3281
Full texts:1228
References:630
Professor
Doctor of physico-mathematical sciences
E-mail:

https://www.mathnet.ru/eng/person27372
List of publications on Google Scholar
https://mathscinet.ams.org/mathscinet/MRAuthorID/235925

Publications in Math-Net.Ru Citations
2024
1. S. L. Berberyan, “On the classification of points of the unit circle for subharmonic functions of class $\mathfrak{A}^*$”, Izv. Vyssh. Uchebn. Zaved. Mat., 2024, no. 2,  81–84  mathnet; Russian Math. (Iz. VUZ), 68:2 (2024), 72–74
2023
2. S. L. Berberian, R. V. Dallakyan, “Angular boundary limits for normal subharmonic functions”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2023, no. 1,  49–53  mathnet  zmath  elib; Moscow University Mathematics Bulletin, 78:1 (2023), 44–48
2022
3. S. L. Berberyan, “Meyer points and refined Meyer points for arbitrary harmonic functions”, Izv. Vyssh. Uchebn. Zaved. Mat., 2022, no. 5,  26–32  mathnet; Russian Math. (Iz. VUZ), 66:5 (2022), 21–25
2019
4. S. L. Berberyan, “On boundedness and angular boundary values of subharmonic functions of classes $\mathfrak{R}^\theta$”, Izv. Vyssh. Uchebn. Zaved. Mat., 2019, no. 4,  85–88  mathnet; Russian Math. (Iz. VUZ), 63:4 (2019), 75–78  isi  scopus 1
2017
5. S. L. Berberian, “Refinement of the Plessner theorem and Plessner points for arbitrary harmonic functions”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2017, no. 4,  58–61  mathnet  mathscinet; Moscow University Mathematics Bulletin, 72:4 (2017), 169–172  isi  scopus
2016
6. S. L. Berberyan, “On boundary theorems of uniqueness for logarithmically-subharmonic functions”, Izv. Vyssh. Uchebn. Zaved. Mat., 2016, no. 9,  3–9  mathnet; Russian Math. (Iz. VUZ), 60:9 (2016), 1–6  isi  scopus 1
2014
7. S. L. Berberyan, “On boundary points of arbitrary harmonic functions”, Izv. Vyssh. Uchebn. Zaved. Mat., 2014, no. 5,  3–11  mathnet; Russian Math. (Iz. VUZ), 58:5 (2014), 1–7  scopus 1
2013
8. S. Berberyan, “On angular boundary limits of normal subharmonic functions”, Eurasian Math. J., 4:2 (2013),  49–56  mathnet  mathscinet  zmath
9. S. L. Berberian, “Boundedness of normal harmonic functions”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2013, no. 2,  57–61  mathnet  mathscinet; Moscow University Mathematics Bulletin, 68:2 (2013), 122–125  scopus 2
2011
10. S. L. Berberyan, “Some applications of $P'$-sequences in studying boundary properties of arbitrary harmonic functions”, Izv. Vyssh. Uchebn. Zaved. Mat., 2011, no. 9,  3–9  mathnet  mathscinet  elib; Russian Math. (Iz. VUZ), 55:9 (2011), 1–6  scopus 3
11. S. L. Berberyan, “The distribution of values of harmonic functions in the unit disk”, Izv. Vyssh. Uchebn. Zaved. Mat., 2011, no. 6,  12–19  mathnet  mathscinet  elib; Russian Math. (Iz. VUZ), 55:6 (2011), 9–14  scopus 5
2007
12. S. L. Berberian, “A classification of boundary singularities of normal subharmonic functions and applications of it”, Uspekhi Mat. Nauk, 62:3(375) (2007),  207–208  mathnet  mathscinet  zmath  elib; Russian Math. Surveys, 62:3 (2007), 615–616  isi  elib  scopus 3
13. S. L. Berberian, “Angular limits of harmonic functions defined in a unit circle”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2007, no. 1,  55–57  mathnet  mathscinet  zmath 2
1986
14. S. L. Berberian, “Corner boundary values of normal continuous functions”, Izv. Vyssh. Uchebn. Zaved. Mat., 1986, no. 3,  22–28  mathnet  mathscinet  zmath; Soviet Math. (Iz. VUZ), 30:3 (1986), 28–35 5

Organisations
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025