|
|
Publications in Math-Net.Ru |
Citations |
|
2023 |
1. |
K. N. Volkov, V. N. Emelyanov, M. S. Yakovchuk, “Competition between instability mechanisms of a supersonic overexpanded air jet as it flows into water”, Pisma v Zhurnal Tekhnicheskoi Fiziki, 49:21 (2023), 29–32 |
2. |
K. N. Volkov, V. N. Emelyanov, A. V. Pustovalov, “Discretization of Boltzmann equation with finite volume method and explicit-implicit schemes”, Sib. Èlektron. Mat. Izv., 20:2 (2023), 942–960 |
|
2022 |
3. |
V. N. Emelyanov, K. N. Volkov, “Direct Numerical Simulation of Fully Developed
Turbulent Gas–Particle Flow in a Duct”, Rus. J. Nonlin. Dyn., 18:3 (2022), 379–395 |
|
2021 |
4. |
K. N. Volkov, V. N. Emelyanov, I. E. Kapranov, “Simulation and visualization of formation of vortex ring, its propagation and transportation of passive scalar”, Num. Meth. Prog., 22:3 (2021), 183–200 |
3
|
|
2020 |
5. |
K. N. Volkov, V. N. Emelyanov, A. V. Efremov, A. I. Tsvetkov, “Flow structure and pressure oscillations during the interaction of a supersonic underexpanded gas jet with a tubular cavity”, Zhurnal Tekhnicheskoi Fiziki, 90:8 (2020), 1254–1266 ; Tech. Phys., 65:8 (2020), 1204–1216 |
4
|
6. |
K. N. Volkov, V. N. Emelyanov, A. V. Efremov, A. I. Tsvetkov, “Acoustic characteristics of self-sustained oscillations occurring due to the interaction of a supersonic underexpanded jet with a cylindrical cavity”, Zhurnal Tekhnicheskoi Fiziki, 90:5 (2020), 733–739 ; Tech. Phys., 65:5 (2020), 703–709 |
3
|
7. |
K. N. Volkov, V. N. Emelyanov, M. S. Yakovchuk, “Unsteady transverse gas injection in a supersonic nozzle flow”, TVT, 58:2 (2020), 256–265 ; High Temperature, 58:2 (2020), 238–246 |
3
|
8. |
K. N. Volkov, V. N. Emelyanov, A. G. Karpenko, I. V. Teterina, “Two-dimensional effects on the interaction of a shock wave with a cloud of particles”, Num. Meth. Prog., 21:3 (2020), 207–224 |
9. |
K. N. Volkov, V. N. Emelyanov, A. G. Karpenko, I. V. Teterina, “Simulation of unsteady gas-particle flow induced by the shock-wave interaction with a particle layer”, Num. Meth. Prog., 21:1 (2020), 96–114 |
1
|
|
2019 |
10. |
K. N. Volkov, V. N. Emelyanov, M. S. Yakovchuk, “Flow structure and thrust change at gas jet injection into the supersonic part of a nozzle”, Zhurnal Tekhnicheskoi Fiziki, 89:3 (2019), 353–359 ; Tech. Phys., 64:3 (2019), 317–323 |
6
|
11. |
K. N. Volkov, V. N. Emelyanov, A. I. Tsvetkov, P. S. Chernyshov, “Mechanisms of generation and noise sources of supersonic jets and the numerical simulation of their gas dynamic and aeroacoustic characteristics”, Num. Meth. Prog., 20:4 (2019), 498–515 |
1
|
12. |
K. N. Volkov, V. N. Emelyanov, A. G. Karpenko, I. V. Teterina, “Simulating flows of viscous incompressible fluid on graphics processors using the splitting scheme and multigrid method”, Zh. Vychisl. Mat. Mat. Fiz., 59:1 (2019), 143–157 ; Comput. Math. Math. Phys., 59:1 (2019), 136–149 |
3
|
|
2018 |
13. |
K. N. Volkov, V. N. Emelyanov, I. V. Teterina, “Visualization of numerical results obtained for gas-particle flows using Lagrangian approaches to the dispersed phase description”, Num. Meth. Prog., 19:4 (2018), 522–539 |
14. |
K. N. Volkov, V. N. Emelyanov, I. E. Kapranov, I. V. Teterina, “Lagrangian coherent vortex structures and their numerical visualization”, Num. Meth. Prog., 19:3 (2018), 293–313 |
15. |
K. N. Volkov, V. N. Emelyanov, M. S. Yakovchuk, “Multiparameter optimization of operating control by the trust vector based on the jet injection into the supersonic part of a nozzle”, Num. Meth. Prog., 19:2 (2018), 158–172 |
|
2017 |
16. |
K. N. Volkov, V. N. Emelyanov, M. S. Yakovchuk, “Simulation of the transverse injection of a pulsed jet from the surface of a flat plate into supersonic flow”, Prikl. Mekh. Tekh. Fiz., 58:6 (2017), 114–125 ; J. Appl. Mech. Tech. Phys., 58:6 (2017), 1053–1062 |
10
|
17. |
N. A. Brykov, K. N. Volkov, V. N. Emelyanov, I. V. Teterina, “Flows of ideal and real gases in channels of variable cross section with unsteady localized energy supply”, Num. Meth. Prog., 18:1 (2017), 20–40 |
18. |
K. N. Volkov, V. N. Emel'yanov, I. V. Teterina, M. S. Yakovchuk, “Visualization of vortical flows in computational fluid dynamics”, Zh. Vychisl. Mat. Mat. Fiz., 57:8 (2017), 1374–1391 ; Comput. Math. Math. Phys., 57:8 (2017), 1360–1375 |
8
|
|
2016 |
19. |
K. N. Volkov, V. N. Emelyanov, I. V. Teterina, M. S. Yakovchuk, “Methods and concepts of vortex flow visualization in the problems of computational fluid dynamics”, Num. Meth. Prog., 17:1 (2016), 81–100 |
1
|
20. |
K. N. Volkov, V. N. Emel'yanov, I. V. Teterina, “Geometric and algebraic multigrid techniques for fluid dynamics problems on unstructured grids”, Zh. Vychisl. Mat. Mat. Fiz., 56:2 (2016), 283–300 ; Comput. Math. Math. Phys., 56:2 (2016), 286–302 |
3
|
|
2015 |
21. |
K. N. Volkov, V. N. Emelyanov, M. S. Yakovchuk, “Numerical simulation of the interaction of a transverse jet with a supersonic flow using different turbulence models”, Prikl. Mekh. Tekh. Fiz., 56:5 (2015), 64–75 ; J. Appl. Mech. Tech. Phys., 56:5 (2015), 789–798 |
13
|
22. |
K. N. Volkov, V. N. Emel'yanov, A. G. Karpenko, “Preconditioning of Navier–Stokes equations in the computation of free convective flows”, Zh. Vychisl. Mat. Mat. Fiz., 55:12 (2015), 2109–2122 ; Comput. Math. Math. Phys., 55:12 (2015), 2080–2093 |
2
|
|
2014 |
23. |
K. N. Volkov, V. N. Emelyanov, A. V. Pustovalov, “Supersonic flows of an inviscid compressible gas in aerodynamic windows of gas lasers”, Num. Meth. Prog., 15:4 (2014), 712–725 |
24. |
K. N. Volkov, Yu. N. Deryugin, V. N. Emelyanov, A. S. Kozelkov, I. V. Teterina, “An algebraic multigrid method in problems of computational physics”, Num. Meth. Prog., 15:2 (2014), 183–200 |
2
|
|
2013 |
25. |
K. N. Volkov, Yu. N. Deryugin, V. N. Emelyanov, A. G. Karpenko, A. S. Kozelkov, P. G. Smirnov, I. V. Teterina, “Implementation of parallel calculations on graphics processor units in the LOGOS computational fluid dynamics package”, Num. Meth. Prog., 14:3 (2013), 334–342 |
2
|
26. |
K. N. Volkov, V. N. Emelyanov, A. G. Karpenko, P. G. Smirnov, I. V. Teterina, “Implementation of a finite volume method and calculation of flows of a viscous compressible gas on graphics processor units”, Num. Meth. Prog., 14:1 (2013), 183–194 |
2
|
27. |
K. N. Volkov, V. N. Emelyanov, A. G. Karpenko, I. V. Kurova, A. E. Serov, P. G. Smirnov, “Numerical solution of fluid mechanics problems on general-purpose graphics processor units”, Num. Meth. Prog., 14:1 (2013), 82–90 |
1
|
|
2008 |
28. |
K. N. Volkov, V. N. Emelyanov, “Implementation of the Lagrangian approach to the description of gas -particle flows on unstructured meshes”, Num. Meth. Prog., 9:1 (2008), 19–33 |
|
2005 |
29. |
K. N. Volkov, V. N. Emelyanov, “Motion and heat transfer of free non-spherical particle in the non-uniform flow”, Mat. Model., 17:4 (2005), 62–80 |
30. |
K. N. Volkov, V. N. Emelyanov, “Calculation of the Threshold Power of Optical Breakdown during Interaction between a Laser Pulse and Droplets of Dielectric Liquid”, TVT, 43:3 (2005), 352–358 ; High Temperature, 43:3 (2005), 344–351 |
2
|
|
2004 |
31. |
K. N. Volkov, V. N. Emelyanov, “Mathematical models of three-dimensional turbulent flows in the ducts with fluid injection”, Mat. Model., 16:10 (2004), 41–63 |
4
|
32. |
K. N. Volkov, V. N. Emelyanov, “Implementation of vectorized finite-difference algorithms for solving boundary value problems of fluid and gas mechanics with MATLAB package”, Num. Meth. Prog., 5:3 (2004), 13–29 |
|
2003 |
33. |
V. N. Emelyanov, A. V. Pustovalov, “Object-oriented software for numerical simulation of gasdynamics flows”, Mat. Model., 15:6 (2003), 59–64 |
34. |
K. N. Volkov, V. N. Emelyanov, “Interaction of intensive flux of radiation with gas-dispersed systems”, Mat. Model., 15:6 (2003), 35–40 |
1
|
|
2001 |
35. |
K. N. Volkov, V. N. Emelyanov, E. L. Ryabova, “Two-level simulation of internal two-phase flows”, Mat. Model., 13:7 (2001), 44–48 |
|
1999 |
36. |
V. A. Anisimov, K. N. Volkov, V. N. Emelyanov, “Subsonic jet flows with free boundaries”, Mat. Model., 11:12 (1999), 16–32 |
37. |
K. N. Volkov, V. N. Emelyanov, “Stochastic model of the condensed particle motion through a duct with fluid injection”, Mat. Model., 11:3 (1999), 105–111 |
1
|
|
Organisations |
|
|
|
|