Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Durdiev, Durdimurod Kalandarovich

Statistics Math-Net.Ru
Total publications: 49
Scientific articles: 49

Number of views:
This page:5848
Abstract pages:13193
Full texts:4648
References:1437
Professor
Doctor of physico-mathematical sciences (2010)
Speciality: 01.01.02 (Differential equations, dynamical systems, and optimal control)
E-mail:
Keywords: integro-differential equation, inverse problem, the wave equation, pulse source, the characteristic, uniqueness, estimate of stability

Subject:

Inverse problems for hyperbolic equations with memory Inverse problems for integro--differential equations of hyperbolic and parabolic types

   
Main publications:
  • 1.Durdiev.D.K. On correctness of one inverse problem for the hyperbolic integro-differential equation//Sib.Math.Journ. 33(1992),3, p.69-77(in russion).
  • 2.Durdiev.D.K. A multi-dimensional inverse problem for equation with memory.//Sib.Math.Journ. 35(1994),3, p.574-582(in russion).

https://www.mathnet.ru/eng/person29112
List of publications on Google Scholar
https://zbmath.org/authors/?q=ai:durdiev.d-k
https://mathscinet.ams.org/mathscinet/MRAuthorID/315724
https://orcid.org/0000-0002-6054-2827
https://publons.com/researcher/AAY-8494-2020
https://www.scopus.com/authid/detail.url?authorId=16411517300

Publications in Math-Net.Ru Citations
2024
1. D. K. Durdiev, “Coefficient inverse problem for an equation of mixed parabolic-hyperbolic type with a non-characteristic line of type change”, Izv. Vyssh. Uchebn. Zaved. Mat., 2024, no. 3,  38–49  mathnet
2. D. K. Durdiev, “Unknown coefficient problem for mixed equation of parabolic-hyperbolic type with non-local boundary conditions on characteristics”, Ufimsk. Mat. Zh., 16:2 (2024),  82–88  mathnet; Ufa Math. J., 16:2 (2024), 81–88
3. D. K. Durdiev, T. R. Suyarov, “Inverse coefficient problem for the 2D wave equation with initial and nonlocal boundary conditions”, Vladikavkaz. Mat. Zh., 26:2 (2024),  5–25  mathnet
4. D. K. Durdiev, I. I. Hasanov, “Inverse coefficient problem for a partial differential equation with multi-term orders fractional Riemann–Liouville derivatives”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 34:3 (2024),  321–338  mathnet
2023
5. D. K. Durdiev, Kh. Kh. Turdiev, “The problem of finding the kernels in the system of integro-differential acoustics equations”, Dal'nevost. Mat. Zh., 23:2 (2023),  190–210  mathnet
6. Durdimurod K. Durdiev, Asliddin A. Boltaev, “The problem of determining kernels in a two-dimensional system of viscoelasticity equations”, Bulletin of Irkutsk State University. Series Mathematics, 43 (2023),  31–47  mathnet  mathscinet
7. D. K. Durdiev, A. A. Boltaev, A. A. Rahmonov, “Convolution kernel determination problem in the third order Moore–Gibson–Thompson equation”, Izv. Vyssh. Uchebn. Zaved. Mat., 2023, no. 12,  3–16  mathnet 1
8. D. K. Durdiev, J. Z. Nuriddinov, “Uniqueness of the kernel determination problem in an integro-differential parabolic equation with variable coefficient”, Izv. Vyssh. Uchebn. Zaved. Mat., 2023, no. 11,  3–14  mathnet
9. D. K. Durdiev, J. J. Jumaev, “Inverse problem of determining the kernel of integro-differential fractional diffusion equation in bounded domain”, Izv. Vyssh. Uchebn. Zaved. Mat., 2023, no. 10,  22–35  mathnet
10. D. K. Durdiev, J. Sh. Safarov, J. Sh. Safarov, “Inverse Problem for an Integrodifferential Equation of the Hyperbolic Type protect in a Rectangular Domain”, Mat. Zametki, 114:2 (2023),  244–259  mathnet  mathscinet; Math. Notes, 114:2 (2023), 199–211  scopus 3
11. D. K. Durdiev, J. J. Jumaev, D. D. Atoev, “Inverse problem on determining two kernels in integro-differential equation of heat flow”, Ufimsk. Mat. Zh., 15:2 (2023),  120–135  mathnet; Ufa Math. J., 15:2 (2023), 119–134 3
12. Durdimurod K. Durdiev, Zhavlon Z. Nuriddinov, “Kernel determination problem for one parabolic equation with memory”, Ural Math. J., 9:2 (2023),  86–98  mathnet  elib
13. D. K. Durdiev, “Inverse problem for an equation of mixed parabolic-hyperbolic type with a characteristic line of change”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 27:4 (2023),  607–620  mathnet
14. D. K. Durdiev, Z. R. Bozorov, A. A. Boltayev, “Inverse problem for the system of viscoelasticity in anisotropic media with tetragonal form of elasticity modulus”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 33:4 (2023),  581–600  mathnet  isi
15. D. K. Durdiev, J. J. Jumayev, D. D. Atoev, “Letter to the Editor: Correction to the “Kernel determination problem in an integro-differential equation of parabolic type with nonlocal condition” [Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 2023, vol. 33, issue 1, pp. 90-102]”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 33:2 (2023),  382–384  mathnet  isi
16. D. K. Durdiev, J. J. Jumayev, D. D. Atoev, “Kernel determination problem in an integro-differential equation of parabolic type with nonlocal condition”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 33:1 (2023),  90–102  mathnet  mathscinet  isi 2
2022
17. Durdimurod K. Durdiev, Zhanna D. Totieva, “Determination of non-stationary potential analytical with respect to spatial variables”, J. Sib. Fed. Univ. Math. Phys., 15:5 (2022),  565–576  mathnet
18. D. K. Durdiev, Zh. D. Totieva, “Determination of a non-stationary adsorption coefficient analytical in part of spatial variables”, Mat. Tr., 25:2 (2022),  88–106  mathnet; Siberian Adv. Math., 33:1 (2023), 1–14
19. D. K. Durdiev, Sh. B. Merajova, “Inverse problem for an equation of mixed parabolic-hyperbolic type with a Bessel operator”, Sib. Zh. Ind. Mat., 25:3 (2022),  14–24  mathnet  mathscinet
20. D. K. Durdiev, J. Sh. Safarov, “2D kernel identification problem in viscoelasticity equation with a weakly horizontal homogeneity”, Sib. Zh. Ind. Mat., 25:1 (2022),  14–38  mathnet  mathscinet 6
21. A. A. Boltaev, D. K. Durdiev, “Inverse problem for viscoelastic system in a vertically layered medium”, Vladikavkaz. Mat. Zh., 24:4 (2022),  30–47  mathnet  mathscinet 5
22. D. K. Durdiev, “Inverse source problem for an equation of mixed parabolic-hyperbolic type with the time fractional derivative in a cylindrical domain”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 26:2 (2022),  355–367  mathnet  mathscinet 2
23. D. K. Durdiev, J. Sh. Safarov, “The problem of determining the memory of an environment with weak horizontal heterogeneity”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 32:3 (2022),  383–402  mathnet  mathscinet 4
2021
24. D. K. Durdiev, E. L. Shishkina, S. M. Sitnik, “Fractional powers of Bessel operator and its numerical calculation”, Chelyab. Fiz.-Mat. Zh., 6:2 (2021),  172–189  mathnet
25. Durdimurod K. Durdiev, Zhavlon Z. Nuriddinov, “Determination of a multidimensional kernel in some parabolic integro–differential equation”, J. Sib. Fed. Univ. Math. Phys., 14:1 (2021),  117–127  mathnet  isi 6
26. D. K. Durdiev, K. K. Turdiev, “The problem of finding the kernels in the system of integro-differential Maxwell's equations”, Sib. Zh. Ind. Mat., 24:2 (2021),  38–61  mathnet  elib; J. Appl. Industr. Math., 15:2 (2021), 190–211  scopus 16
27. D. K. Durdiev, Zh. D. Totieva, “About global solvability of a multidimensional inverse problem for an equation with memory”, Sibirsk. Mat. Zh., 62:2 (2021),  269–285  mathnet  elib; Siberian Math. J., 62:2 (2021), 215–229  isi  scopus 11
2020
28. D. K. Durdiev, Zh. D. Totieva, “Inverse problem for a second-order hyperbolic integro-differential equation with variable coefficients for lower derivatives”, Sib. Èlektron. Mat. Izv., 17 (2020),  1106–1127  mathnet  isi 4
29. D. K. Durdiev, A. A. Rahmonov, “The problem of determining the 2D-kernel in a system of integro-differential equations of a viscoelastic porous medium”, Sib. Zh. Ind. Mat., 23:2 (2020),  63–80  mathnet  elib; J. Appl. Industr. Math., 14:2 (2020), 281–295  scopus 30
30. D. K. Durdiev, Zh. Z. Nuriddinov, “On investigation of the inverse problem for a parabolic integro-differential equation with a variable coefficient of thermal conductivity”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 30:4 (2020),  572–584  mathnet  isi 12
2018
31. Zh. D. Totieva, D. K. Durdiev, “The Problem of Finding the One-Dimensional Kernel of the Thermoviscoelasticity Equation”, Mat. Zametki, 103:1 (2018),  129–146  mathnet  mathscinet  elib; Math. Notes, 103:1 (2018), 118–132  isi  scopus 18
32. D. K. Durdiev, A. A. Rakhmonov, “Inverse problem for a system of integro-differential equations for SH waves in a visco-elastic porous medium: Global solvability”, TMF, 195:3 (2018),  491–506  mathnet  mathscinet  elib; Theoret. and Math. Phys., 195:3 (2018), 923–937  isi  scopus 44
2017
33. D. K. Durdiev, Zh. D. Totieva, “The problem of determining the one-dimensional kernel of the electroviscoelasticity equation”, Sibirsk. Mat. Zh., 58:3 (2017),  553–572  mathnet  elib; Siberian Math. J., 58:3 (2017), 427–444  isi  elib  scopus 18
2016
34. D. K. Durdiev, U. D. Durdiev, “The problem of kernel determination from viscoelasticity system integro-differential equations for homogeneous anisotropic media”, Nanosystems: Physics, Chemistry, Mathematics, 7:3 (2016),  405–409  mathnet  isi 1
2015
35. D. K. Durdiev, Zh. Sh. Safarov, “Inverse Problem of Determining the One-Dimensional Kernel of the Viscoelasticity Equation in a Bounded Domain”, Mat. Zametki, 97:6 (2015),  855–867  mathnet  mathscinet  elib; Math. Notes, 97:6 (2015), 867–877  isi  scopus 44
36. D. K. Durdiev, “Inverse problem for the identification of a memory kernel from Maxwell's system integro-differential equations for a homogeneous anisotropic media”, Nanosystems: Physics, Chemistry, Mathematics, 6:2 (2015),  268–273  mathnet  isi  elib 1
37. D. Q. Durdiev, Zh. D. Totieva, “The problem of determining the multidimensional kernel of viscoelasticity equation”, Vladikavkaz. Mat. Zh., 17:4 (2015),  18–43  mathnet 32
38. D. K. Durdiev, “On the uniqueness of kernel determination in the integro-differential equation of parabolic type”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 19:4 (2015),  658–666  mathnet  zmath  elib 10
2013
39. D. K. Durdiev, Z. R. Bozorov, “A problem of determining the kernel of integrodifferential wave equation with weak horizontal properties”, Dal'nevost. Mat. Zh., 13:2 (2013),  209–221  mathnet 8
40. D. K. Durdiev, Zh. D. Totieva, “The problem of determining the one-dimensional kernel of the viscoelasticity equation”, Sib. Zh. Ind. Mat., 16:2 (2013),  72–82  mathnet  mathscinet 33
2012
41. D. K. Durdiev, Zh. Sh. Safarov, “The local solvability of a problem of determining the spatial part of a multidimensional kernel in the integro-differential equation of hyperbolic type”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 4(29) (2012),  37–47  mathnet 11
2009
42. Durdimurod K. Durdiev, “An Identification Problem of Memory Function of a Medium and the Form of an Impulse Source”, J. Sib. Fed. Univ. Math. Phys., 2:2 (2009),  127–136  mathnet 3
43. D. K. Durdiev, “The Problem of Determining a Function of the Memory of a Medium and of the Regular Part of a Pulsed Source”, Mat. Zametki, 86:2 (2009),  202–212  mathnet  mathscinet  zmath; Math. Notes, 86:2 (2009), 187–195  isi  scopus
44. D. K. Durdiev, “An Inverse Problem for Determining Two Coefficients in an Integrodifferential Wave Equation”, Sib. Zh. Ind. Mat., 12:3 (2009),  28–40  mathnet  mathscinet 15
45. D. K. Durdiev, “Global solvability of two unknown variables identification problem in one inverse problem for the integro-differential wave equation”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2(19) (2009),  17–28  mathnet
2008
46. D. K. Durdiev, “Problem of determining the nonstationary potential in a hyperbolic-type equation”, TMF, 156:2 (2008),  220–225  mathnet  mathscinet  zmath; Theoret. and Math. Phys., 156:2 (2008), 1154–1158  isi  scopus 3
2007
47. D. K. Durdiev, “Some multidimensional inverse problems of memory determination in hyperbolic equations”, Zh. Mat. Fiz. Anal. Geom., 3:4 (2007),  411–423  mathnet  mathscinet  zmath 17
1994
48. D. K. Durdiev, “A multidimensional inverse problem for an equation with memory”, Sibirsk. Mat. Zh., 35:3 (1994),  574–582  mathnet  mathscinet  zmath; Siberian Math. J., 35:3 (1994), 514–521  isi 26
1992
49. D. K. Durdiev, “On the ill-posedness of an inverse problem for a hyperbolic integro-differential equation”, Sibirsk. Mat. Zh., 33:3 (1992),  69–77  mathnet  mathscinet  zmath; Siberian Math. J., 33:3 (1992), 427–433  isi 10

Organisations
  • Bukhara branch of V. I. Romanovskiy Institute of Mathematcs of the Academy of Sciences of Uzbekistan
  • Bukhara State University
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024