01.01.05 (Probability theory and mathematical statistics)
Birth date:
20.02.1975
E-mail:
Keywords:
mixing,
convergence to stationary distribution,
population extinction,
fixation time.
UDC:
519.21
Subject:
Limit theorems of probability theory, mathematical biology models.
Main publications:
Veretennikov A. Yu., Klokov S. A., “O subeksponentsialnoi skorosti peremeshivaniya dlya markovskikh protsessov”, Teoriya veroyatn. i ee primenen., 49:1 (2004), 21–35
S. A. Klokov, “O nizhnikh otsenkakh skorosti peremeshivaniya dlya odnogo klassa markovskikh protsessov”, TVP, 51:3 (2006), 600–607; Theory Probab. Appl., 51:3 (2007), 528–535
Klokov S. A., Topchii V. A., “O vremeni vytesneniya odnim iz tipov chastits vsekh ostalnykh v populyatsii fiksirovannoi chislennosti”, Matematicheskie trudy, 8:2 (2005), 168–183
Klokov S.A., “Upper Estimates of the Mean Extinction Time of a Population with a Constant Carrying Capacity”, Mathematical Population Studies, 16:3 (2009), 221–230
A. Yu. Veretennikov, S. A. Klokov, “On subexponential mixing rate for Markov processes”, Theory Probab. Appl., 49:1 (2005), 110–122
2.
Klokov S. A., “On law bounds for mixing rates for a class of Markov processes”, Theory Probab. Appl., 51:3 (2007), 528–535
3.
Borisovsky, Pavel A.; Eremeev, Anton V.; Grinkevich, Egor B.; Klokov, Sergey A.; Vinnikov, Andrey V., “Trading hubs construction for electricity markets.”, Optimization in the energy industry., eds. Kallrath, Josef (ed.) et al., Springer. Energy Systems, Berlin, 2009, 29–57
Klokov S. A., Veretennikov A. Yu., “On mixing and convergence rates for a family of Markov processes approximating SDEs”, Random Operators and Stochastic Equations, 14:2 (2006), 103–126
A. Yu. Veretennikov, S. A. Klokov, “On local mixing conditions for SDE approximations”, Theory Probab. Appl., 57:1 (2013), 110–131
6.
Klokov S. A., Topchii V. A., “Mean fixation time estimates in constant size populations”, Siberian Math. J., 47:6 (2006), 1042–1053
7.
Klokov S. A., Topchii V. A., “On the Time of Supplanting All Particles by Particles of One Type in a Fixed Size Population”, Siberian Adv. Math., 16:2 (2006), 93–107
8.
Klokov S.A., “Upper Estimates of the Mean Extinction Time of a Population with a Constant Carrying Capacity”, Mathematical Population Studies, 16:3 (2009), 221–230