|
|
Publications in Math-Net.Ru |
Citations |
|
2025 |
1. |
V. A. Kyrov, “Surfaces on the pseudo-Helmholtz group”, Mat. Zametki, 117:2 (2025), 285–294 ; Math. Notes, 117:2 (2025), 300–308 |
|
2024 |
2. |
V. A. Kyrov, “Weingarten equations for surfaces on Helmholtz-type groups”, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 235 (2024), 68–77 |
3. |
R. A. Bogdanova, V. A. Kyrov, “Solution of a system of functional equations associated with an affine group”, Vladikavkaz. Mat. Zh., 26:3 (2024), 24–32 |
4. |
V. A. Kyrov, “On the local extension of the group of parallel translations in three-dimensional space. II”, Vladikavkaz. Mat. Zh., 26:2 (2024), 54–69 |
|
2023 |
5. |
V. A. Kyrov, “Solutions of some systems of functional equations related to complex, double, and dual numbers”, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 229 (2023), 37–46 |
6. |
V. A. Kyrov, “On the local extension of the group of parallel translations of four-dimensional space”, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 225 (2023), 87–107 |
7. |
V. A. Kyrov, G. G. Mikhailichenko, “Solution of three systems of functional equations related to complex, double and dual numbers”, Izv. Vyssh. Uchebn. Zaved. Mat., 2023, no. 7, 42–51 |
1
|
8. |
V. A. Kyrov, “Left-invariant metrics of some three-dimensional Lie groups”, Mathematical notes of NEFU, 30:4 (2023), 24–36 |
2
|
|
2022 |
9. |
V. A. Kyrov, “Analytical embedding for geometries of constant curvature”, Chebyshevskii Sb., 23:3 (2022), 133–146 |
10. |
V. A. Kyrov, “Local extension of the translation group of a plane to a locally doubly transitive transformation Lie group of the same plane”, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 204 (2022), 85–96 |
1
|
11. |
V. A. Kyrov, “On locally boundedly exactly doubly transitive lie groups of transformations of the space with a subgroup of parallel translations”, Mat. Tr., 25:2 (2022), 126–148 ; Siberian Adv. Math., 33:1 (2023), 39–55 |
12. |
V. A. Kyrov, “Curves in the geometry of a special extension of Euclidean space”, Mathematical notes of NEFU, 29:1 (2022), 3–12 |
13. |
V. A. Kyrov, G. G. Mikhailichenko, “Nondegenerate canonical solutions of a certain system of functional equations”, Vladikavkaz. Mat. Zh., 24:1 (2022), 44–53 |
2
|
14. |
V. A. Kyrov, “On local extension of the group of parallel translations in three-dimensional space”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 32:1 (2022), 62–80 |
3
|
|
2021 |
15. |
V. A. Kyrov, “Solution of the embedding problem for two-dimensional and three-dimensional geometries of local maximum mobility”, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 194 (2021), 124–143 |
16. |
V. A. Kyrov, “Analytic embedding of pseudo-Helmholtz geometry”, Izv. Saratov Univ. Math. Mech. Inform., 21:3 (2021), 294–304 |
17. |
V. A. Kyrov, G. G. Mikhailichenko, “Nondegenerate canonical solutions of one system of functional equations”, Izv. Vyssh. Uchebn. Zaved. Mat., 2021, no. 8, 46–55 ; Russian Math. (Iz. VUZ), 65:8 (2021), 40–48 |
5
|
18. |
V. A. Kyrov, “Multiply transitive Lie group of transformations as a physical structure”, Mat. Tr., 24:2 (2021), 81–104 |
2
|
19. |
V. A. Kyrov, “To the question of local extension of the parallel translations group of three-dimensional space”, Vladikavkaz. Mat. Zh., 23:1 (2021), 32–42 |
4
|
|
2020 |
20. |
V. A. Kyrov, “Hypercomplex numbers in some geometries of two sets. II”, Izv. Vyssh. Uchebn. Zaved. Mat., 2020, no. 5, 39–54 ; Russian Math. (Iz. VUZ), 64:5 (2020), 31–48 |
5
|
21. |
Vladimir A. Kyrov, “Commutative hypercomplex numbers and the geometry of two sets”, J. Sib. Fed. Univ. Math. Phys., 13:3 (2020), 373–382 |
4
|
22. |
V. A. Kyrov, “Аналитическое вложение геометрий со скалярным произведением”, Mat. Tr., 23:1 (2020), 150–168 |
|
2019 |
23. |
V. A. Kyrov, “Analytic embedding of geometries of constant curvature on a pseudosphere”, Izv. Saratov Univ. Math. Mech. Inform., 19:3 (2019), 246–257 |
1
|
24. |
V. A. Kyrov, “Analytic embedding of some two-dimensional geometries of maximal mobility”, Sib. Èlektron. Mat. Izv., 16 (2019), 916–937 |
3
|
25. |
V. A. Kyrov, “Analytic embedding of three-dimensional simplicial geometries”, Trudy Inst. Mat. i Mekh. UrO RAN, 25:2 (2019), 125–136 |
3
|
26. |
V. A. Kyrov, “Analytical embedding of three-dimensional Helmholtz-type geometries”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 29:4 (2019), 532–547 |
|
2018 |
27. |
V. A. Kyrov, “The embedding of multidimensional special extensions of pseudo-Euclidean geometries”, Chelyab. Fiz.-Mat. Zh., 3:4 (2018), 408–420 |
3
|
28. |
V. A. Kyrov, “The analytical method for embedding multidimensional
pseudo-Euclidean geometries”, Sib. Èlektron. Mat. Izv., 15 (2018), 741–758 |
9
|
29. |
V. A. Kyrov, R. A. Bogdanova, “The groups of motions of some three-dimensional maximal mobility geometries”, Sibirsk. Mat. Zh., 59:2 (2018), 412–421 ; Siberian Math. J., 59:2 (2018), 323–331 |
9
|
30. |
V. A. Kyrov, “On a family of functional equations”, Vladikavkaz. Mat. Zh., 20:3 (2018), 69–77 |
31. |
V. A. Kyrov, “On the embedding of two-dimetric phenomenologically symmetric geometries”, Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2018, no. 56, 5–16 |
7
|
32. |
V. A. Kyrov, G. G. Mikhailichenko, “Embedding of an additive two-dimensional phenomenologically symmetric geometry of two sets of rank $(2,2)$ into two-dimensional phenomenologically symmetric geometries of two sets of rank $(3,2)$”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 28:3 (2018), 305–327 |
10
|
|
2017 |
33. |
V. A. Kyrov, “Solving of functional equations associated with the scalar product”, Chelyab. Fiz.-Mat. Zh., 2:1 (2017), 30–45 |
2
|
34. |
G. G. Mikhailichenko, V. A. Kyrov, “Hypercomplex numbers in some geometries of two sets. I”, Izv. Vyssh. Uchebn. Zaved. Mat., 2017, no. 7, 19–29 ; Russian Math. (Iz. VUZ), 61:7 (2017), 15–24 |
6
|
35. |
V. A. Kyrov, G. G. Mikhailichenko, “The analytic method of embedding symplectic geometry”, Sib. Èlektron. Mat. Izv., 14 (2017), 657–672 |
9
|
36. |
V. A. Kyrov, G. G. Mikhailichenko, “An analytic method for the embedding of the Euclidean and pseudo-Euclidean geometries”, Trudy Inst. Mat. i Mekh. UrO RAN, 23:2 (2017), 167–181 |
12
|
37. |
V. A. Kyrov, “Embedding of phenomenologically symmetric geometries of two sets of rank $(N,M)$ into phenomenologically symmetric geometries of two sets of rank $(N+1,M)$”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 27:1 (2017), 42–53 |
4
|
38. |
V. A. Kyrov, “On a class of functional equations”, Mathematical Physics and Computer Simulation, 20:5 (2017), 17–26 |
|
2016 |
39. |
V. A. Kyrov, “The pseudo-Helmholtz and dual Helmholtz planes with the Finsler geometry”, Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2016, no. 6(44), 5–18 |
1
|
40. |
V. A. Kyrov, “The properly Helmholtz plane as Finsler geometry”, Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2016, no. 4(42), 15–22 |
1
|
41. |
V. A. Kyrov, “Embedding of phenomenologically symmetric geometries of two sets of the rank $(N,2)$ into phenomenologically symmetric geometries of two sets of the rank $(N+1,2)$”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 26:3 (2016), 312–323 |
6
|
|
2012 |
42. |
Vladimir A. Kyrov, “Projective geometry and phenomenological symmetry”, J. Sib. Fed. Univ. Math. Phys., 5:1 (2012), 82–90 |
2
|
43. |
V. A. Kyrov, “The Lie Algebra of the Group of Motions of a Phenomenologically Symmetric Geometry”, Mat. Zametki, 91:2 (2012), 312–315 ; Math. Notes, 91:2 (2012), 298–301 |
44. |
V. A. Kyrov, “On some class of functional-differential equations”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 1(26) (2012), 31–38 |
6
|
|
2010 |
45. |
V. A. Kyrov, “Functional equations in pseudo-Euclidean geometry”, Sib. Zh. Ind. Mat., 13:4 (2010), 38–51 |
15
|
46. |
V. A. Kyrov, “Functional equations in symplectic geometry”, Trudy Inst. Mat. i Mekh. UrO RAN, 16:2 (2010), 149–153 |
8
|
|
2009 |
47. |
V. A. Kyrov, “Phenomenologically symmetrical local Lie groups of transformations of the space $R^s$”, Izv. Vyssh. Uchebn. Zaved. Mat., 2009, no. 7, 10–21 ; Russian Math. (Iz. VUZ), 53:7 (2009), 7–16 |
4
|
48. |
V. A. Kyrov, “Criterion for the Nondegeneracy of a Transformation Group”, Mat. Zametki, 85:1 (2009), 144–146 ; Math. Notes, 85:1 (2009), 133–135 |
49. |
V. A. Kyrov, “Критерий невырожденности $sn(n+1)/2$-параметрической группы Ли преобразований пространства $\mathbb R^{sn}$”, Sib. Zh. Ind. Mat., 12:1 (2009), 109–113 ; J. Appl. Industr. Math., 4:3 (2010), 349–353 |
50. |
V. A. Kyrov, R. M. Muradov, “Some of Transformation Groups and Their Invarians”, Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 9:3 (2009), 54–63 |
1
|
|
2008 |
51. |
V. A. Kyrov, “Projective geometry and the theory of physical structures”, Izv. Vyssh. Uchebn. Zaved. Mat., 2008, no. 11, 48–59 ; Russian Math. (Iz. VUZ), 52:11 (2008), 42–52 |
5
|
52. |
V. A. Kyrov, “Classification of four-dimensional transitive local Lie groups of transformations of the space $R\sp 4$ and their two-point invariants”, Izv. Vyssh. Uchebn. Zaved. Mat., 2008, no. 6, 29–42 ; Russian Math. (Iz. VUZ), 52:6 (2008), 25–36 |
53. |
Vladimir A. Kyrov, “Affine Geometry as a Physical Structure”, J. Sib. Fed. Univ. Math. Phys., 1:4 (2008), 460–464 |
3
|
54. |
R. M. Muradov, V. A. Kirov, “On quasigroups arising from physical structure of $(2,2)$ rank”, Prikl. Diskr. Mat., 2008, no. 2(2), 12–14 |
55. |
V. A. Kirov, “Three-basal quasigroup with generalized Word's identity”, Prikl. Diskr. Mat., 2008, no. 1(1), 21–24 |
|
2005 |
56. |
V. A. Kyrov, “Two-metric spaces”, Izv. Vyssh. Uchebn. Zaved. Mat., 2005, no. 8, 27–38 ; Russian Math. (Iz. VUZ), 49:8 (2005), 25–35 |
1
|
57. |
V. A. Kyrov, “Two-dimensional Helmholtz spaces”, Sibirsk. Mat. Zh., 46:6 (2005), 1341–1359 ; Siberian Math. J., 46:6 (2005), 1082–1096 |
9
|
|
Organisations |
|
|
|
|