Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Fedorov, Gleb Vladimirovich

Statistics
in MathSciNet: 13 (13)
in zbMATH: 13 (13)
in Web of Science: 13 (13)
in Scopus: 17 (17)
Fedorov, Gleb Vladimirovich
Doctor of physico-mathematical sciences (2025)
E-mail: ;
Website: https://istina.msu.ru/profile/FedorovGleb/
Keywords: Divisor function, S-units and fundamental units of hyperelliptic fields, torsion points in Jacobian, continued fractions.
UDC: 511.2, 511.41, 512.772.7, 512.75

https://www.mathnet.ru/eng/person31327
List of publications on Google Scholar
https://elibrary.ru/author_items.asp?authorid=631227
ISTINA https://istina.msu.ru/workers/3061420
https://orcid.org/0000-0002-8373-7766
https://publons.com/researcher/D-9498-2019
https://www.webofscience.com/wos/author/record/D-9498-2019
https://www.scopus.com/authid/detail.url?authorId=55534815600

List of publications:
| scientific publications | by years | by types | by times cited | common list |


Citations (Crossref Cited-By Service + Math-Net.Ru)

Articles

1. V. P. Platonov, G.V. Fedorov, “Asymptotic behavior of period lengths of continued fractions in a hyperelliptic field”, Izv. RAN. Ser. Mat. (to appear)  mathnet
2. V. P. Platonov, V. S. Zhgoon, G. V. Fedorov, “Finiteness theorems for generalized Jacobians with nontrivial torsion”, Sb. Math., 216:4 (2025), 560–577  mathnet  crossref  crossref  crossref  mathscinet  adsnasa  isi  scopus
3. G.V. Fedorov, “On the sequences of polynomials $f$ with a periodic continued fraction expansion $\sqrt{f}$”, Moscow University Mathematics Bulletin, 79:2 (2024), 98–102  mathnet  crossref  crossref  elib
4. V. P. Platonov, G.V. Fedorov, “Continued fractions in hyperelliptic fields with an arbitrarily long period”, Dokl. Math., 109:2 (2024), 147–151  mathnet  crossref  crossref  elib
5. G.V. Fedorov, “On hyperelliptic curves of odd degree and genus $g$ with six torsion points of order $2g+1$”, Dokl. Math., 110:4 (2024), 301–307  mathnet  crossref  crossref  elib
6. G.V. Fedorov, “On estimates for the period length of functional continued fractions over algebraic number fields”, Chebyshevskii Sb., 24:3 (2023), 162–189  mathnet  crossref
7. G. V. Fedorov, “Continued Fractions and the Classification Problem for Elliptic Fields Over Quadratic Fields of Constants”, Math. Notes, 114:6 (2023), 1203–1219  mathnet  crossref  crossref  crossref  scopus
8. V. P. Platonov, V. S. Zhgoon, G.V. Fedorov, “On the finiteness of the set of generalized Jacobians with nontrivial torsion points over algebraic number fields”, Dokl. Math., 108:2 (2023), 382–386  mathnet  crossref  crossref  elib
9. G. V. Fedorov, “On the problem of describing elements of elliptic fields with a periodic expansion into a continued fraction over quadratic fields”, Dokl. Math., 106:1 (2022), 259–264  mathnet  crossref  crossref  elib
10. G. V. Fedorov, V. S. Zhgoon, M. M. Petrunin, Yu. N. Shteinikov, “On the Parametrization of Hyperelliptic Fields with $S$-Units of Degrees 7 and 9”, Math. Notes, 112:3 (2022), 451–457  mathnet  crossref  crossref  mathscinet  scopus
11. V. P. Platonov, G. V. Fedorov, “Periodicity Criterion for Continued Fractions of Key Elements in Hyperelliptic Fields”, Doklady Mathematics, 2022, 262–269  crossref
12. G. V. Fedorov, “On fundamental $S$-units and continued fractions constructed in hyperelliptic fields using two linear valuations”, Dokl. Math., 103:3 (2021), 151–156  mathnet  crossref  crossref  zmath  elib  scopus
13. V. P. Platonov, G. V. Fedorov, “On the classification problem for polynomials $f$ with a periodic continued fraction expansion of $\sqrt{f}$ in hyperelliptic fields”, Izv. Math., 85:5 (2021), 972–1007  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
14. G. V. Fedorov, “On families of hyperelliptic curves over the field of rational numbers, whose Jacobian contains torsion points of given orders”, Chebyshevskii Sb., 21:1 (2020), 322–340  mathnet  crossref
15. G. V. Fedorov, “On the period length of a functional continued fraction over a number field”, Dokl. Math., 102:3 (2020), 513–517  mathnet  crossref  crossref  zmath  elib
16. G. V. Fedorov, “On $S$-units for valuations of the second degree in hyperelliptic fields”, Izv. Math., 84:2 (2020), 392–435  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
17. V. P. Platonov, G. V. Fedorov, “On the problem of classification of periodic continued fractions in hyperelliptic fields”, Russian Math. Surveys, 75:4 (2020), 785–787  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
18. G. V. Fedorov, “On boundedness of period lengths of continued fractions of key elements hyperelliptic fields over the field of rational numbers”, Chebyshevskii Sb., 20:4 (2019), 357–370  mathnet  crossref
19. V. P. Platonov, G. V. Fedorov, “The criterion of periodicity of continued fractions of key elements in hyperelliptic fields”, Doklady Mathematics (Supplementary issues), 106:2 (2022), 262–269  mathnet  crossref  crossref
20. V. P. Platonov, G. V. Fedorov, “On $S$-units for linear valuations and the periodicity of continued fractions of generalized type in hyperelliptic fields”, Dokl. Math., 99:3 (2019), 277–281  mathnet  crossref  crossref  isi  elib  scopus
21. G. V. Fedorov, “Periodic continued fractions and $S$-units with second degree valuations in hyperelliptic fields”, Chebyshevskii Sb., 19:3 (2018), 282–297  mathnet  crossref  elib
22. V. P. Platonov, G. V. Fedorov, “An Infinite Family of Curves of Genus 2 over the Field of Rational Numbers Whose Jacobian Varieties Contain Rational Points of Order 28”, Dokl. Math., 98:2 (2018), 468–471  mathnet  crossref  crossref  isi  elib  scopus
23. V. P. Platonov, V. S. Zhgoon, G. V. Fedorov, “On the Periodicity of Continued Fractions in Hyperelliptic Fields over Quadratic Constant Field”, Dokl. Math., 98:2 (2018), 430–434  mathnet  crossref  crossref  isi  elib  scopus
24. V. P. Platonov, G. V. Fedorov, “On the problem of periodicity of continued fractions in hyperelliptic fields”, Sb. Math., 209:4 (2018), 519–559  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
25. G. V. Fedorov, “On unordered multiplicative partitions”, Doklady Mathematics, 98 (2018), 607–611 (to appear)  crossref  crossref  zmath
26. V. P. Platonov, G. V. Fedorov, “An infinite family of curves of genus 2 over the field of rational numbers whose jacobian varieties contain rational points of order 28”, Doklady Mathematics, 98:2 (2018), 468–471  mathnet  crossref  crossref  mathscinet  zmath
27. V. P. Platonov, G. V. Fedorov, “On the periodicity of continued fractions in elliptic fields”, Dokl. Math., 96:1 (2017), 332–335  mathnet  crossref  crossref  mathscinet  isi  elib  elib  scopus
28. V. P. Platonov, G. V. Fedorov, “On the periodicity of continued fractions in hyperelliptic fields”, Dokl. Math., 95:3 (2017), 254–258  mathnet  crossref  crossref  isi  elib  scopus
29. V. P. Platonov, V. S. Zhgoon, G. V. Fedorov, “Continued Rational Fractions in Hyperelliptic Fields and the Mumford Representation”, Dokl. Math., 94:3 (2016), 692–696  mathnet  crossref  crossref  isi  elib  scopus
30. V. P. Platonov, G. V. Fedorov, “$S$-units and periodicity of continued fractions in hyperelliptic fields”, Dokl. Math., 92:3 (2015), 752–756  mathnet  crossref  crossref  zmath  isi  elib  scopus
31. G. V. Fedorov, “On a number of prime divisors of an integer with bounded multipleness”, Izv. Saratov Univ. Math. Mech. Inform., 13:4(2) (2013), 129–133  mathnet  crossref  elib
32. G. V. Fedorov, “On the Number of Divisors of Binomial Coefficients”, Math. Notes, 93:2 (2013), 308–316  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib  scopus
33. G. V. Fedorov, “Number of divisors of the central binomial coefficient”, Moscow University Mathematics Bulletin, 68:4 (2013), 194–197  mathnet  crossref  mathscinet  scopus
34. G. V. Fedorov, “The upper limit value of the divisor function with growing dimension”, Doklady Mathematics, 88:2 (2013), 529–531  crossref  crossref  mathscinet  zmath
35. G. V. Fedorov, “The greatest order of the divisor function with increasing dimension”, Matematica Montisnigri, 28 (2013), 17–24 https://www.montis.pmf.ac.me/vol28/28_2.pdf
36. G. V. Fedorov, “On a theorem of A.I. Pavlov”, Doklady Mathematics, 86:2 (2012), 648–649  crossref  mathscinet  zmath
37. G. V. Fedorov, “Estimation of the sum of values of the divisor function”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2010, no. 2, 50–53  mathnet  mathscinet  zmath

Personalia

38. V. V. Aleksandrov, S. B. Gashkov, D. V. Georgievskii, V. P. Karlikov, B. S. Kashin, G. M. Kobel'kov, V. V. Kozlov, T. P. Lukashenko, A. S. Mishchenko, Yu. V. Nesterenko, R. I. Nigmatulin, O. V. Popov, V. A. Sadovnichii, I. N. Sergeev, G. V. Fedorov, A. T. Fomenko, A. I. Shafarevich, A. N. Shiryaev, V. Ya. Shkadov, A. A. Shkalikov, “To 70-th anniversary of professor V. N. Chubarikov”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2021, no. 5, 69–71  mathnet

Presentations in Math-Net.Ru
1. On the unboundedness of period lengths of functional continued fractions in a hyperelliptic field
G. V. Fedorov
International conference “Number-theoretic aspects of linear algebraic groups and algebraic varieties: results and prospects” dedicated to 85-th anniversary of academician V.P. Platonov
June 17, 2025 16:00   
2. Гиперэллиптические кривые и криптографические приложения
G.V. Fedorov
Modern geometry methods
May 14, 2025 18:30
3. The theory of functional continued fractions and the torsion problem in the Jacobians of hyperelliptic curves
G. V. Fedorov
Seminar on Complex Analysis (Gonchar Seminar)
April 12, 2021 17:00
4. Functional continued fractions with large period lengths
G.V. Fedorov
International conference on Analytic Number Theory dedicated to 75th anniversary of G. I. Arkhipov and S. M. Voronin
December 14, 2020 13:15   
5. Алгебро-геометрический подход к проблеме кручения в якобианах гиперэллиптических кривых
G. V. Fedorov
Research Seminar of the Department of Higher Algebra MSU
September 30, 2019
6. On unordered multiplicative partitions
G. V. Fedorov
XV International Conference «Algebra, Number Theory and Discrete Geometry: modern problems and applications», dedicated to the centenary of the birth of the Doctor of Physical and Mathematical Sciences, Professor of the Moscow State University Korobov Nikolai Mikhailovich
May 30, 2018 17:00
7. $S$-единицы и непрерывные дроби в гиперэллиптических полях
G. V. Fedorov
Knots and Representation Theory
December 19, 2017 18:30
8. On the periodicity of continued fractions in elliptic fields
G. V. Fedorov
А.A.Karatsuba's 80th Birthday Conference in Number Theory and Applications
May 27, 2017 11:35   
9. The Riemann-Roch theorem and periodicity of continued fractions in hyperelliptic fields
G. V. Fedorov
Conference to the Memory of Anatoly Alekseevitch Karatsuba on Number theory and Applications
January 30, 2016 11:05
10. On the distribution of random integer-valued quantities obeying to some arithmetical inequality
G. V. Fedorov
Conference in memory of A. A. Karatsuba on number theory and applications, 2015
January 31, 2015 15:30
11. On the distribution of the values of the divisor function
G. V. Fedorov
Conference in memory of A. A. Karatsuba on number theory and applications
January 31, 2014 15:00   

Organisations