Kalitin B.S., “Razvitie metoda znakopostoyannykh funktsii Lyapunova.”, Vybranyya navukovyya pratsy. . T. Matematyka, 2001, 232-257
Kalitine B., “Sur le théorème de la stabilité non asymptotique dans la méthode directe de Lyapunov.”, C. R. Acad. Sci. Paris, Ser. I 338 (2004), 163-166
Kalitin B.S., “O printsipe svedeniya dlya asimptoticheski treugolnykh differentsialnykh sistem”, Prikladnaya matematika i mekhanika, 71:3 (2007), 389-400
B. S. Kalitin, “On a Problem of V. V. Nemytskii”, Mat. Zametki, 113:2 (2023), 182–196; Math. Notes, 113:2 (2023), 200–211
2022
2.
B. S. Kalitin, “Pseudo-prolongations in the qualitative theory of dynamical systems”, Journal of the Belarusian State University. Mathematics and Informatics, 3 (2022), 45–53
3.
B. S. Kalitine, “About the criteria of asymptotic stability of dynamical systems”, Izv. Vyssh. Uchebn. Zaved. Mat., 2022, no. 9, 30–38; Russian Math. (Iz. VUZ), 66:9 (2022), 26–32
2021
4.
B. S. Kalitine, “Properties of Neighborhoods of Attractors of Dynamical Systems”, Mat. Zametki, 109:5 (2021), 734–746; Math. Notes, 109:5 (2021), 748–758
B. S. Kalitine, “On the Lyapunov theorem for semi-dynamical systems”, Tr. Inst. Mat., 29:1-2 (2021), 94–105
2020
6.
B. S. Kalitin, “Stability of solutions and the problem of Aizerman for sixth-order differential equations”, Journal of the Belarusian State University. Mathematics and Informatics, 2 (2020), 49–58
2019
7.
B. S. Kalitin, “Stability of some differential equations of the fourth-order and fifth-order”, Journal of the Belarusian State University. Mathematics and Informatics, 1 (2019), 18–27
B. S. Kalitin, “On the Aizerman problem for the scalar differential equations”, Izv. Vyssh. Uchebn. Zaved. Mat., 2019, no. 9, 37–49; Russian Math. (Iz. VUZ), 63:9 (2019), 31–42
B. S. Kalitin, “On the Aizerman Problem for Systems of Two Differential Equations”, Mat. Zametki, 105:2 (2019), 240–250; Math. Notes, 105:2 (2019), 227–235
B. S. Kalitin, “On the stability of third order differential equations”, Journal of the Belarusian State University. Mathematics and Informatics, 2 (2018), 25–33
B. S. Kalitine, “On solving the problems of stability by Lyapunov's direct method”, Izv. Vyssh. Uchebn. Zaved. Mat., 2017, no. 6, 33–43; Russian Math. (Iz. VUZ), 61:6 (2017), 27–36
B. S. Kalitin, R. Chabour, “Method of semidefinite Lyapunov functions for systems of nonautonomous differential equations”, Izv. Vyssh. Uchebn. Zaved. Mat., 2012, no. 5, 28–39; Russian Math. (Iz. VUZ), 56:5 (2012), 23–33
B. S. Kalitin, V. V. Bezruk, “Model of the first order of the monopoly market”, Tr. Inst. Mat., 17:1 (2009), 61–70
2006
17.
B. S. Kalitin, “Mechanics of price development in the competitive market”, Tr. Inst. Mat., 14:1 (2006), 62–70
2005
18.
B. S. Kalitin, “On the Structure of a Neighborhood of Stable Compact Invariant Sets”, Differ. Uravn., 41:8 (2005), 1062–1073; Differ. Equ., 41:8 (2005), 1115–1125
B. S. Kalitin, “Lyapunov Stability and Orbital Stability of Dynamical Systems”, Differ. Uravn., 40:8 (2004), 1033–1042; Differ. Equ., 40:8 (2004), 1096–1105
B. S. Kalitin, “Stability of Closed Invariant Sets of Semidynamical Systems. The Method of Sign Definite Lyapunov Functions”, Differ. Uravn., 38:11 (2002), 1565–1566; Differ. Equ., 38:11 (2002), 1662–1664
B. S. Kalitin, T. Sari, “$B$-Stability and Its Applications to the Tikhonov and Malkin–Gorshin Theorems”, Differ. Uravn., 37:1 (2001), 12–17; Differ. Equ., 37:1 (2001), 11–16
B. S. Kalitin, “On the method of sign-constant Lyapunov functions for nonautonomous differential systems”, Differ. Uravn., 31:4 (1995), 583–590; Differ. Equ., 31:4 (1995), 541–548
B. S. Kalitin, “On the structure of a neighborhood of weakly attracting compact sets”, Differ. Uravn., 30:4 (1994), 565–574; Differ. Equ., 30:4 (1994), 518–525
B. S. Kalitin, “Nonasymptotic stability of invariant sets”, Izv. Vyssh. Uchebn. Zaved. Mat., 1986, no. 8, 31–34; Soviet Math. (Iz. VUZ), 30:8 (1986), 38–42
1977
32.
B. S. Kalitin, “Complete controllability of linear systems with variable structure”, Differ. Uravn., 13:3 (1977), 556–558
1971
33.
B. S. Kalitin, “The limit cycles of pendulum systems with impulse perturbation”, Differ. Uravn., 7:3 (1971), 540–542
1970
34.
B. S. Kalitin, “The oscillations of a pendulum with a shock impulse. II”, Differ. Uravn., 6:12 (1970), 2174–2181
1969
35.
B. S. Kalitin, “The vibrations of a mathematical pendulum with a shock impulse”, Differ. Uravn., 5:7 (1969), 1267–1274
2021
36.
B. S. Kalitin, “On some problems of instability in semi-dynamical systems”, Journal of the Belarusian State University. Mathematics and Informatics, 1 (2021), 39–45