Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Valovik, Dmitry Viktorovich

Statistics Math-Net.Ru
Total publications: 35
Scientific articles: 32

Number of views:
This page:949
Abstract pages:7788
Full texts:1979
References:1414
Candidate of physico-mathematical sciences (2008)
Speciality: 01.01.02 (Differential equations, dynamical systems, and optimal control)
Birth date: 2.09.1982
E-mail:
Website: https://lk.pnzgu.ru/portfolio/13118119
Keywords: Maxwells equations, nonlinear eigenvalue problems, electromagnetic wave propagation.
UDC: 517.958, 514.7, 519.634

Subject:

Nonlinear eigenvalue problems for Maxwells equations.

   
Main publications:
  1. Valovik D.V., “On the problem of nonlinear coupled electromagnetic transverse- electric.transverse-magnetic wave propagation”, Journal of Mathematical Physics, 54:4 (2013), 042902 (14 pages)  mathnet  crossref  mathscinet
  2. Valovik D.V., “Integral dispersion equation method to solve a nonlinear boundary eigenvalue problem”, Nonlinear Analysis: Real World Applications, 20 (2014), 52–58  crossref  mathscinet
  3. Smirnov Yu.G., Valovik D.V., “Guided electromagnetic waves propagating in a plane dielectric waveguide with nonlinear permittivity”, Physical Review A, 92:1 (2015), 013840 (6 pages)  crossref  mathscinet
  4. Smirnov Yu.G., Valovik D.V., “On the infinitely many nonperturbative solutions in a transmission eigenvalue problem for Maxwell.s equations with cubic nonlinearity”, Journal of Mathematical Physics, 57:10 (2016), 103504 (15 pages)  crossref  mathscinet
  5. Valovik D.V., “Novel propagation regimes for TE waves guided by a waveguide filled with Kerr medium”, Journal of Nonlinear Optical Physics & Materials, 25:4 (2016), 1650051 (17 pages)  crossref

https://www.mathnet.ru/eng/person32146
https://scholar.google.com/citations?user=WBVkwCoAAAAJ&hl=en
https://zbmath.org/authors/ai:valovik.dmitry-v
https://mathscinet.ams.org/mathscinet/MRAuthorID/873058
https://elibrary.ru/author_items.asp?spin=3995-1152
ISTINA https://istina.msu.ru/workers/6929701
https://orcid.org/0000-0001-5406-4788
https://publons.com/researcher/1295087/dmitry-valo
https://www.webofscience.com/wos/author/record/F-8088-2013
https://www.scopus.com/authid/detail.url?authorId=24726073300
https://www.researchgate.net/profile/Dmitry_Valovik

Publications in Math-Net.Ru Citations
2024
1. D. V. Valovik, S. V. Tikhov, “Existence of solutions of a nonlinear eigenvalue problem and their properties”, Mat. Sb., 215:1 (2024),  59–81  mathnet  mathscinet  zmath; Sb. Math., 215:1 (2024), 52–73  isi  scopus
2. D. V. Valovik, A. A. Dyundyaeva, S. V. Tikhov, “On a nonstandard perturbation method for proving the existence of nonlinearizable solutions in a nonlinear eigenvalue problem arising in waveguide theory”, Zh. Vychisl. Mat. Mat. Fiz., 64:10 (2024),  1949–1965  mathnet  elib; Comput. Math. Math. Phys., 64:10 (2024), 2351–2367
2021
3. D. V. Valovik, “Perturbation method in the theory of propagation of two-frequency electromagnetic waves in a nonlinear waveguide I: TE-TE waves”, Zh. Vychisl. Mat. Mat. Fiz., 61:1 (2021),  108–123  mathnet  elib; Comput. Math. Math. Phys., 61:1 (2021), 103–117  isi  scopus 9
2020
4. D. V. Valovik, S. V. Tikhov, “Linearizable and nonlinearizable solutions in the nonlinear eigenvalue problem arising in the theory of electrodynamic waveguides filled with a nonlinear medium”, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 176 (2020),  34–49  mathnet  mathscinet
5. D. V. Valovik, “On the integral characteristic function of the Sturm-Liouville problem”, Mat. Sb., 211:11 (2020),  41–53  mathnet  mathscinet  zmath  elib; Sb. Math., 211:11 (2020), 1539–1550  isi  scopus 2
6. D. V. Valovik, “Propagation of electromagnetic waves in an open planar dielectric waveguide filled with a nonlinear medium II: TM waves”, Zh. Vychisl. Mat. Mat. Fiz., 60:3 (2020),  429–450  mathnet  elib; Comput. Math. Math. Phys., 60:3 (2020), 427–447  isi  scopus 7
2019
7. D. V. Valovik, V. Yu. Kurseeva, “Multiparameter eigenvalue problems and their applications in electrodynamics”, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 172 (2019),  9–29  mathnet
8. D. V. Valovik, “Propagation of electromagnetic waves in an open planar dielectric waveguide filled with an nonlinear medium I: TE waves”, Zh. Vychisl. Mat. Mat. Fiz., 59:5 (2019),  838–858  mathnet  elib; Comput. Math. Math. Phys., 59:6 (2019), 958–977  isi  scopus 16
2018
9. D. V. Valovik, S. V. Tikhov, “On the existence of an infinite number of eigenvalues in one nonlinear problem of waveguide theory”, Zh. Vychisl. Mat. Mat. Fiz., 58:10 (2018),  1656–1665  mathnet  elib; Comput. Math. Math. Phys., 58:10 (2018), 1600–1609  isi  scopus 10
2017
10. E. O. Biteleva, D. V. Valovik, “A note on hybrid waves in plane layered waveguiding structures”, University proceedings. Volga region. Physical and mathematical sciences, 2017, no. 3,  3–14  mathnet
11. D. V. Valovik, “The spectral properties of some nonlinear operators of Sturm-Liouville type”, Mat. Sb., 208:9 (2017),  26–41  mathnet  mathscinet  zmath  elib; Sb. Math., 208:9 (2017), 1282–1297  isi  scopus 3
12. D. V. Valovik, E. Yu. Smol'kin, “Nonlinear propagation of coupled electromagnetic waves in a circular cylindrical waveguide”, Zh. Vychisl. Mat. Mat. Fiz., 57:8 (2017),  1304–1320  mathnet  elib; Comput. Math. Math. Phys., 57:8 (2017), 1294–1309  isi  scopus 6
2016
13. D. V. Valovik, A. E. Demchenko, “On one approach to the problem of polarized electromagnetic waves diffraction on a dielectric layer filled with a nonlinear medium”, University proceedings. Volga region. Physical and mathematical sciences, 2016, no. 4,  28–37  mathnet
2015
14. D. V. Valovik, M. Yu. Medvedik, Yu. G. Smirnov, A. A. Tsupak, “Existence and unicity of the solution of the diffraction problem for an electromagnetic wave on a system of non-intersecting bodies and screens”, University proceedings. Volga region. Physical and mathematical sciences, 2015, no. 1,  89–97  mathnet 2
2014
15. D. V. Valovik, Yu. G. Smirnov, “On the problem of propagation of nonlinear coupled TE–TM waves in a layer”, Zh. Vychisl. Mat. Mat. Fiz., 54:3 (2014),  504–518  mathnet  elib; Comput. Math. Math. Phys., 54:3 (2014), 522–536  isi  elib  scopus 3
2013
16. D. V. Valovik, E. A. Marennikova, Yu. G. Smirnov, “A nonlinear transmission eigenvalue problem that describes electromagnetic ТЕ wave propagation in a plane inhomogeneous nonlinear dielectric waveguide”, University proceedings. Volga region. Physical and mathematical sciences, 2013, no. 2,  50–63  mathnet
17. D. V. Valovik, Yu. G. Smirnov, E. Yu. Smol'kin, “Nonlinear transmission eigenvalue problem describing TE wave propagation in two-layered cylindrical dielectric waveguides”, Zh. Vychisl. Mat. Mat. Fiz., 53:7 (2013),  1150–1161  mathnet  mathscinet  elib; Comput. Math. Math. Phys., 53:7 (2013), 973–983  isi  elib  scopus 18
18. D. V. Valovik, E. V. Zarembo, “The method of cauchy problem for solving a nonlinear eigenvalue transmission problem for TM waves propagating in a layer with arbitrary nonlinearity”, Zh. Vychisl. Mat. Mat. Fiz., 53:1 (2013),  74–89  mathnet  mathscinet  zmath  elib; Comput. Math. Math. Phys., 53:1 (2013), 78–92  isi  elib  scopus 12
2012
19. D. V. Valovik, E. R. Ergasheva, “The problem of diffraction of electromagnetic TE waves on a nonlinear layer”, University proceedings. Volga region. Physical and mathematical sciences, 2012, no. 4,  73–83  mathnet
20. D. V. Valovik, Yu. G. Smirnov, “Propagation of coupled electromagnetic TE and TM waves in a plane layer with Kerr nonlinearity”, University proceedings. Volga region. Physical and mathematical sciences, 2012, no. 4,  21–48  mathnet
21. D. V. Valovik, E. Yu. Smol'kin, “Numerical solution of the problem of propagation of electromagnetic TM waves in a circular dielectric waveguide filled with a nonlinear medium”, University proceedings. Volga region. Physical and mathematical sciences, 2012, no. 3,  29–37  mathnet 2
22. Yu. G. Smirnov, S. N. Kupriyanova, D. V. Valovik, “On the propagation of electromagnetic waves in cylindrical inhomogeneous dielectric waveguides filled with a nonlinear medium”, University proceedings. Volga region. Physical and mathematical sciences, 2012, no. 3,  3–16  mathnet
23. D. V. Valovik, “Coupling problem for electromagnetic TE waves propagating in a flat two-layer nonlinear dielectric waveguide”, University proceedings. Volga region. Physical and mathematical sciences, 2012, no. 2,  43–49  mathnet
24. D. V. Valovik, Yu. G. Smirnov, E. A. Shirokova, “Numerical method in the problem of propagation of electromagnetic TE waves in a two-layer nonlinear waveguide structure”, University proceedings. Volga region. Physical and mathematical sciences, 2012, no. 1,  66–74  mathnet 1
2011
25. D. V. Valovik, “Propagation of TM waves in a layer with arbitrary nonlinearity”, Zh. Vychisl. Mat. Mat. Fiz., 51:9 (2011),  1729–1739  mathnet  mathscinet; Comput. Math. Math. Phys., 51:9 (2011), 1622–1632  isi  scopus 32
2010
26. D. V. Valovik, Yu. G. Smirnov, “Collocation method for solving the electric field equation”, University proceedings. Volga region. Physical and mathematical sciences, 2010, no. 4,  89–100  mathnet
27. D. V. Valovik, Yu. G. Smirnov, “Propagation of TM-polarized electromagnetic waves in a dielectric layer of a nonlinear metamaterial”, University proceedings. Volga region. Physical and mathematical sciences, 2010, no. 3,  71–87  mathnet
28. D. V. Valovik, “The problem of propagation of electromagnetic waves in a layer with arbitrary nonlinearity (II. TM waves)”, University proceedings. Volga region. Physical and mathematical sciences, 2010, no. 2,  54–65  mathnet 1
29. D. V. Valovik, Yu. G. Smirnov, “Dispersion equations in the problem of electromagnetic wave propagation in a linear layer and metamaterials”, University proceedings. Volga region. Physical and mathematical sciences, 2010, no. 1,  28–42  mathnet 1
30. D. V. Valovik, “The problem of propagation of electromagnetic waves in a layer with arbitrary nonlinearity (I. TE are the waves)”, University proceedings. Volga region. Physical and mathematical sciences, 2010, no. 1,  18–27  mathnet 3
2008
31. D. V. Valovik, Yu. G. Smirnov, “A nonlinear boundary eigenvalues problem for TM-polarized electromagnetic waves in a nonlinear layer”, Izv. Vyssh. Uchebn. Zaved. Mat., 2008, no. 10,  70–74  mathnet  mathscinet  zmath; Russian Math. (Iz. VUZ), 52:10 (2008), 60–63 6
32. D. V. Valovik, Yu. G. Smirnov, “Propagation of TM waves in a Kerr nonlinear layer”, Zh. Vychisl. Mat. Mat. Fiz., 48:12 (2008),  2186–2194  mathnet  mathscinet; Comput. Math. Math. Phys., 48:12 (2008), 2217–2225  isi  scopus 48

2009
33. D. V. Valovik, Yu. G. Smirnov, “The method of pseudodifferential operators for the study of a volumetric singular integral equation of an electric field”, University proceedings. Volga region. Physical and mathematical sciences, 2009, no. 4,  70–84  mathnet 4
34. Yu. G. Smirnov, D. V. Valovik, “Analytical continuation of the Green's function for the equation Helmholtz in the layer”, University proceedings. Volga region. Physical and mathematical sciences, 2009, no. 2,  83–90  mathnet
2008
35. D. V. Valovik, “On the existence of solutions to the nonlinear boundary value eigenvalue problem for TM-polarized electromagnetic waves”, University proceedings. Volga region. Physical and mathematical sciences, 2008, no. 2,  86–94  mathnet 2

Organisations
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025