Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Olemskoi, Igor' Vladimirovich

Statistics Math-Net.Ru
Total publications: 17
Scientific articles: 16

Number of views:
This page:462
Abstract pages:4598
Full texts:2646
References:462
Professor
Doctor of physico-mathematical sciences
E-mail: ,

https://www.mathnet.ru/eng/person33387
List of publications on Google Scholar
https://mathscinet.ams.org/mathscinet/MRAuthorID/281155
https://orcid.org/0000-0001-8897-9898,

Publications in Math-Net.Ru Citations
2024
1. I. V. Olemskoy, A. S. Eremin, A. V. Matrosov, “Direct method for solving systems of second order ordinary differential equations”, Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 20:3 (2024),  324–334  mathnet
2023
2. I. V. Olemskoy, A. S. Eremin, O. S. Firyulina, “A nine-parametric family of embedded methods of sixth order”, Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 19:4 (2023),  449–468  mathnet 1
3. D. P. Goloskokov, A. V. Matrosov, I. V. Olemskoy, “Bending of a clamped thin isotropic plate by the Kantorovich method using special polynomials”, Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 19:4 (2023),  423–442  mathnet 1
4. I. V. Olemskoy, O. S. Firyulina, “Algorithm for optimal coloring of square $(0,1)$-matrices”, Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 19:1 (2023),  90–108  mathnet
2022
5. I. V. Olemskoy, O. S. Firyulina, O. A. Tumka, “Families of embedded methods of order six”, Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 18:2 (2022),  285–296  mathnet  mathscinet 2
2021
6. I. V. Olemskoy, A. S. Eremin, “Algorithm of construction of effective explicit methods for structurally partitioned systems of ordinary differential equations”, Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 17:4 (2021),  353–369  mathnet 3
2019
7. I. V. Olemskoy, N. A. Kovrizhnykh, O. S. Firyulina, “Two-parametric family of sixth order numerical methods for solving systems of ordinary differential equations”, Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 15:4 (2019),  502–517  mathnet 3
2018
8. I. V. Olemskoy, N. A. Kovrizhnykh, “A family of sixth-order methods with six stages”, Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 14:3 (2018),  215–229  mathnet  elib 6
2017
9. V. P. Bubnov, A. S. Eremin, N. A. Kovrizhnykh, I. V. Olemskoy, “Comparative study of the advantages of structural numerical integration methods for ordinary differential equations”, Tr. SPIIRAN, 53 (2017),  51–72  mathnet  elib 2
2014
10. I. V. Olemskoy, “Explicit nested methods of integration of systems of structurally separated ordinary differential equations of first and second order”, Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 2014, no. 4,  64–71  mathnet
11. I. V. Olemskoy, O. S. Firyulina, “Algorithm for finding maximum independent set”, Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 2014, no. 1,  79–89  mathnet 1
2010
12. A. S. Eremin, I. V. Olemskoĭ, “An embedded method for the integration of systems of structurally separated ordinary differential equations”, Zh. Vychisl. Mat. Mat. Fiz., 50:3 (2010),  434–448  mathnet  mathscinet; Comput. Math. Math. Phys., 50:3 (2010), 414–427  isi  scopus 10
2005
13. I. V. Olemskoi, “Construction of explicit methods of Runge–Kutta type for the integration of systems of a special type”, Izv. Vyssh. Uchebn. Zaved. Mat., 2005, no. 2,  75–80  mathnet  mathscinet  zmath; Russian Math. (Iz. VUZ), 49:2 (2005), 72–77
14. I. V. Olemskoi, “A fifth-order five-stage embedded method of the Dormand–Prince type”, Zh. Vychisl. Mat. Mat. Fiz., 45:7 (2005),  1181–1191  mathnet  mathscinet  zmath; Comput. Math. Math. Phys., 45:7 (2005), 1140–1150 13
2003
15. I. V. Olemskoi, “Structural approach to the design of explicit one-stage methods”, Zh. Vychisl. Mat. Mat. Fiz., 43:7 (2003),  961–974  mathnet  mathscinet  zmath; Comput. Math. Math. Phys., 43:7 (2003), 918–931 17
2002
16. I. V. Olemskoi, “Fifth-order four-stage method for numerical integration of special systems”, Zh. Vychisl. Mat. Mat. Fiz., 42:8 (2002),  1179–1190  mathnet  mathscinet  zmath; Comput. Math. Math. Phys., 42:8 (2002), 1135–1145 17

2014
17. V. N. Igolkin, V. V. Karelin, S. K. Myshkov, L. N. Polyakova, G. Sh. Tamasyan, L. A. Petrosyan, E. I. Veremey, Yu. M. Dahl, O. I. Drivotin, V. Yu. Dobrynin, N. V. Egorov, A. P. Zhabko, A. M. Kamachkin, G. A. Leonov, V. S. Novoselov, D. A. Ovsyannikov, A. N. Terekhov, S. V. Chistyakov, V. L. Kharitonov, V. M. Bure, A. Yu. Aleksandrov, S. N. Andrianov, A. O. Bochkarev, V. V. Evstafieva, V. S. Ermolin, V. V. Zakharov, I. V. Olemskoy, Yu. G. Pronina, S. L. Sergeev, A. Yu. Uteshev, O. N. Chizhova, “V. F. Demianov”, Vestnik S.-Petersburg Univ. Ser. 10. Prikl. Mat. Inform. Prots. Upr., 2014, no. 2,  154–156  mathnet

Organisations
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025