Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Pevzner, Igor' Mikhailovich

Statistics Math-Net.Ru
Total publications: 13
Scientific articles: 13

Number of views:
This page:580
Abstract pages:4167
Full texts:1265
References:792
Candidate of physico-mathematical sciences (2008)
Speciality: 01.01.06 (Mathematical logic, algebra, and number theory)
E-mail:
Website: https://atlas.herzen.spb.ru/teacher.php?id=3629

https://www.mathnet.ru/eng/person33644
List of publications on Google Scholar
https://mathscinet.ams.org/mathscinet/MRAuthorID/728880
https://elibrary.ru/author_items.asp?authorid=621893

Publications in Math-Net.Ru Citations
2024
1. I. M. Pevzner, “The existence of root subgroup translated by a given element into its opposite. II”, Zap. Nauchn. Sem. POMI, 531 (2024),  147–151  mathnet
2023
2. I. M. Pevzner, “Orbits of vectors in some representations. III”, Zap. Nauchn. Sem. POMI, 522 (2023),  152–163  mathnet
3. I. M. Pevzner, “Orbits of vectors in some representations. II”, Zap. Nauchn. Sem. POMI, 522 (2023),  125–151  mathnet
2019
4. I. M. Pevzner, “Orbits of vectors in some representations”, Zap. Nauchn. Sem. POMI, 484 (2019),  149–164  mathnet 2
2017
5. I. M. Pevzner, “The existence of root subgroup translated by a given element into its opposite”, Zap. Nauchn. Sem. POMI, 460 (2017),  190–202  mathnet; J. Math. Sci. (N. Y.), 240:4 (2019), 494–502 4
2015
6. I. M. Pevzner, “Width of extraspecial unipotent radical with respect to root elements”, Zap. Nauchn. Sem. POMI, 435 (2015),  168–177  mathnet  mathscinet; J. Math. Sci. (N. Y.), 219:4 (2016), 598–603 4
2014
7. I. M. Pevzner, “Width of $\mathrm{GL}(6,K)$ with respect to quasi-root elements”, Zap. Nauchn. Sem. POMI, 423 (2014),  183–204  mathnet  mathscinet; J. Math. Sci. (N. Y.), 209:4 (2015), 600–613  scopus 5
2011
8. I. M. Pevzner, “Width of groups of type $\mathrm E_6$ with respect to root elements. I”, Algebra i Analiz, 23:5 (2011),  155–198  mathnet  mathscinet  elib; St. Petersburg Math. J., 23:5 (2012), 891–919  isi  elib  scopus 9
9. I. M. Pevzner, “The geometry of root elements in groups of type $\mathrm E_6$”, Algebra i Analiz, 23:3 (2011),  261–309  mathnet  mathscinet  zmath  elib; St. Petersburg Math. J., 23:3 (2012), 603–635  isi  elib  scopus 11
10. I. M. Pevzner, “Width of groups of type $\mathrm E_6$ with respect to root elements. II”, Zap. Nauchn. Sem. POMI, 386 (2011),  242–264  mathnet; J. Math. Sci. (N. Y.), 180:3 (2012), 338–350  scopus 9
2007
11. N. A. Vavilov, I. M. Pevzner, “Triples of long root subgroups”, Zap. Nauchn. Sem. POMI, 343 (2007),  54–83  mathnet  mathscinet  elib; J. Math. Sci. (N. Y.), 147:5 (2007), 7005–7020  elib  scopus 16
2006
12. N. A. Vavilov, A. Yu. Luzgarev, I. M. Pevzner, “Chevalley group of type $\mathrm E_6$ in the 27-dimensional representation”, Zap. Nauchn. Sem. POMI, 338 (2006),  5–68  mathnet  mathscinet  zmath  elib; J. Math. Sci. (N. Y.), 145:1 (2007), 4697–4736  elib  scopus 27
2003
13. A. Yu. Luzgarev, I. M. Pevzner, “Private life of $\mathrm{GL}(5,\mathbb Z)$”, Zap. Nauchn. Sem. POMI, 305 (2003),  153–162  mathnet  mathscinet  zmath; J. Math. Sci. (N. Y.), 130:3 (2005), 4729–4733 13

Organisations
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025