N. N. Osipov, “Bellman function method for general operators on martingales: arbitrary regular filtrations”, Algebra i Analiz, 35:6 (2023), 150–158
2.
N. N. Osipov, “The von Neumann–Morgenstern rationality axioms and analytic inequalities”, Zap. Nauchn. Sem. POMI, 529 (2023), 197–217
2021
3.
V. A. Borovitskii, N. N. Osipov, A. S. Tselishchev, “On the Bellman function method for operators on martingales”, Dokl. RAN. Math. Inf. Proc. Upr., 498 (2021), 27–30; Dokl. Math., 103:3 (2021), 118–121
N. N. Osipov, “Bellman function for a parametric family of extremal problems in $\mathrm{BMO}$”, Zap. Nauchn. Sem. POMI, 467 (2018), 128–142; J. Math. Sci. (N. Y.), 243:6 (2019), 907–916
2016
5.
N. N. Osipov, “Littlewood–Paley–Rubio de Francia inequality for the Walsh system”, Algebra i Analiz, 28:5 (2016), 236–246; St. Petersburg Math. J., 28:5 (2017), 719–726
N. N. Osipov, “The Littlewood-Paley-Rubio de Francia inequality in Morrey-Campanato spaces”, Mat. Sb., 205:7 (2014), 95–114; Sb. Math., 205:7 (2014), 1004–1023
N. N. Osipov, “Littlewood–Paley–Rubio de Francia inequality in Morrey–Campanato spaces: an announcement”, Zap. Nauchn. Sem. POMI, 416 (2013), 117–123; J. Math. Sci. (N. Y.), 202:4 (2014), 560–564
2010
8.
N. N. Osipov, “Littlewood–Paley inequality for arbitrary rectangles in $\mathbb R^2$ for $0<p\le2$”, Algebra i Analiz, 22:2 (2010), 164–184; St. Petersburg Math. J., 22:2 (2011), 293–306
N. N. Osipov, “One-sided Littlewood–Paley inequality in $\mathbb R^n$ for $0<p\le2$”, Zap. Nauchn. Sem. POMI, 376 (2010), 88–115; J. Math. Sci. (N. Y.), 172:2 (2011), 229–242
N. N. Osipov, “The Function $G_\lambda^*$ as the Norm of a Calderón–Zygmund Operator”, Mat. Zametki, 86:3 (2009), 421–428; Math. Notes, 86:3 (2009), 400–406