Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Quesne, Christiane

E-mail:

https://www.mathnet.ru/eng/person50271
List of publications on Google Scholar
https://mathscinet.ams.org/mathscinet/MRAuthorID/193895

Publications in Math-Net.Ru Citations
2022
1. Ian Marquette, Christiane Quesne, “Ladder Operators and Hidden Algebras for Shape Invariant Nonseparable and Nondiagonalizable Models with Quadratic Complex Interaction. II. Three-Dimensional Model”, SIGMA, 18 (2022), 005, 24 pp.  mathnet  mathscinet  isi  scopus 2
2. Ian Marquette, Christiane Quesne, “Ladder Operators and Hidden Algebras for Shape Invariant Nonseparable and Nondiagonalizable Models with Quadratic Complex Interaction. I. Two-Dimensional Model”, SIGMA, 18 (2022), 004, 11 pp.  mathnet  mathscinet  scopus 2
2015
3. Yves Grandati, Christiane Quesne, “Confluent Chains of DBT: Enlarged Shape Invariance and New Orthogonal Polynomials”, SIGMA, 11 (2015), 061, 26 pp.  mathnet  mathscinet  isi  scopus 23
2012
4. Christiane Quesne, “Novel enlarged shape invariance property and exactly solvable rational extensions of the Rosen–Morse II and Eckart potentials”, SIGMA, 8 (2012), 080, 19 pp.  mathnet  mathscinet  isi  scopus 43
2011
5. Christiane Quesne, “Revisiting the Symmetries of the Quantum Smorodinsky–Winternitz System in $D$ Dimensions”, SIGMA, 7 (2011), 035, 21 pp.  mathnet  mathscinet  isi  scopus 7
2009
6. Christiane Quesne, “Solvable Rational Potentials and Exceptional Orthogonal Polynomials in Supersymmetric Quantum Mechanics”, SIGMA, 5 (2009), 084, 24 pp.  mathnet  mathscinet  isi  scopus 130
7. Christiane Quesne, “Point Canonical Transformation versus Deformed Shape Invariance for Position-Dependent Mass Schrödinger Equations”, SIGMA, 5 (2009), 046, 17 pp.  mathnet  mathscinet  zmath  isi  scopus 38
2007
8. Christiane Quesne, “Quadratic Algebra Approach to an Exactly Solvable Position-Dependent Mass Schrödinger Equation in Two Dimensions”, SIGMA, 3 (2007), 067, 14 pp.  mathnet  mathscinet  zmath  isi  scopus 58
9. Christiane Quesne, Volodymyr M. Tkachuk, “Generalized Deformed Commutation Relations with Nonzero Minimal Uncertainties in Position and/or Momentum and Applications to Quantum Mechanics”, SIGMA, 3 (2007), 016, 18 pp.  mathnet  mathscinet  zmath  isi  scopus 33

Organisations