Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Post, Sarah

E-mail: ,
Website: http://crm.umontreal.ca/~post/

https://www.mathnet.ru/eng/person50582
List of publications on Google Scholar
https://mathscinet.ams.org/mathscinet/MRAuthorID/828715

Publications in Math-Net.Ru Citations
2024
1. Sarah Post, Sébastien Bertrand, “The Racah Algebra of Rank 2: Properties, Symmetries and Representation”, SIGMA, 20 (2024), 085, 21 pp.  mathnet
2020
2. Sarah Post, Paul Terwilliger, “An Infinite-Dimensional $\square_q$-Module Obtained from the $q$-Shuffle Algebra for Affine $\mathfrak{sl}_2$”, SIGMA, 16 (2020), 037, 35 pp.  mathnet  isi  scopus
2015
3. Sarah Post, “Racah Polynomials and Recoupling Schemes of $\mathfrak{su}(1,1)$”, SIGMA, 11 (2015), 057, 17 pp.  mathnet  mathscinet  isi  scopus 17
4. Joshua J. Capel, Jonathan M. Kress, Sarah Post, “Invariant Classification and Limits of Maximally Superintegrable Systems in 3D”, SIGMA, 11 (2015), 038, 17 pp.  mathnet  mathscinet  isi  scopus 20
2013
5. Ernest G. Kalnins, Willard Miller Jr., Sarah Post, “Contractions of 2D 2nd Order Quantum Superintegrable Systems and the Askey Scheme for Hypergeometric Orthogonal Polynomials”, SIGMA, 9 (2013), 057, 28 pp.  mathnet  mathscinet  isi  scopus 58
2011
6. Ernie G. Kalnins, Willard Miller Jr., Sarah Post, “Two-Variable Wilson Polynomials and the Generic Superintegrable System on the $3$-Sphere”, SIGMA, 7 (2011), 051, 26 pp.  mathnet  mathscinet  isi  scopus 37
7. Sarah Post, “Models of Quadratic Algebras Generated by Superintegrable Systems in 2D”, SIGMA, 7 (2011), 036, 20 pp.  mathnet  mathscinet  isi  scopus 21
2009
8. Ernest G. Kalnins, Jonathan M. Kress, Willard Miller Jr., Sarah Post, “Structure Theory for Second Order 2D Superintegrable Systems with 1-Parameter Potentials”, SIGMA, 5 (2009), 008, 24 pp.  mathnet  mathscinet  zmath  isi  scopus 25
2008
9. E. G. Kalnins, Willard Miller. Jr., Sarah Post, “Models for Quadratic Algebras Associated with Second Order Superintegrable Systems in 2D”, SIGMA, 4 (2008), 008, 21 pp.  mathnet  mathscinet  zmath  isi  scopus 34

Organisations