Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Daryina, Anna Nikolaevna

Statistics Math-Net.Ru
Total publications: 6
Scientific articles: 6

Number of views:
This page:328
Abstract pages:1784
Full texts:566
References:235
Candidate of physico-mathematical sciences (2005)
Speciality: 01.01.09 (Discrete mathematics and mathematical cybernetics)
E-mail:

https://www.mathnet.ru/eng/person53073
List of publications on Google Scholar
https://mathscinet.ams.org/mathscinet/MRAuthorID/735063
https://elibrary.ru/author_items.asp?authorid=151728

Publications in Math-Net.Ru Citations
2024
1. E. A. Sofronova, A. I. Diveev, D. E. Kazaryan, S. V. Konstantinov, A. N. Daryina, Ya. A. Seliverstov, L. A. Baskin, “Utilizing multi-source real data for traffic flow optimization in CTraf”, Computer Research and Modeling, 16:1 (2024),  147–159  mathnet 1
2022
2. A. N. Daryina, A. I. Diveev, D. Yu. Karamzin, F. L. Pereira, E. A. Sofronova, R. A. Chertovskikh, “Regular approximations of the fastest motion of mobile robot under bounded state variables”, Zh. Vychisl. Mat. Mat. Fiz., 62:9 (2022),  1564–1584  mathnet  elib; Comput. Math. Math. Phys., 62:9 (2022), 1539–1558 1
2012
3. A. N. Daryina, A. F. Izmailov, “On active-set methods for the quadratic programming problem”, Zh. Vychisl. Mat. Mat. Fiz., 52:4 (2012),  602–613  mathnet  mathscinet  elib; Comput. Math. Math. Phys., 52:4 (2012), 512–523  isi  elib  scopus 3
2009
4. A. N. Daryina, A. F. Izmailov, “Semismooth Newton method for quadratic programs with bound constraints”, Zh. Vychisl. Mat. Mat. Fiz., 49:10 (2009),  1785–1795  mathnet; Comput. Math. Math. Phys., 49:10 (2009), 1706–1716  isi  scopus 3
2007
5. A. N. Daryina, A. F. Izmailov, “On the Newton-type method with admissible trajectories for mixed complementatiry problems”, Avtomat. i Telemekh., 2007, no. 2,  152–161  mathnet  mathscinet  zmath; Autom. Remote Control, 68:2 (2007), 351–360  scopus
2004
6. A. N. Daryina, A. F. Izmailov, M. V. Solodov, “Mixed complementary problems: regularity, estimates of the distance to the solution, and Newton's Methods”, Zh. Vychisl. Mat. Mat. Fiz., 44:1 (2004),  51–69  mathnet  mathscinet  zmath; Comput. Math. Math. Phys., 44:1 (2004), 45–61 7

Organisations
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025