| List of publications: |
|
|
Citations (Crossref Cited-By Service + Math-Net.Ru) |
|
|
Articles
|
|
| |
| 1. |
Olga Balkanova, John Brian Conrey, Dmitry Frolenkov, “An approximation formula for the shifted cubic moment of automorphic L-functions in the weight aspect”, Can. J. Math., 77:3 (2025), 715–738 |
| 2. |
D. Frolenkov, Izv. RAN. Ser. Mat. |
| 3. |
Dmitry Frolenkov, “Asymptotics of a Gauss hypergeometric function related to moments of symmetric square $L$-functions II”, Integral Transforms Spec. Funct., 2025, 1–12 (Published online) , arXiv: 2408.05619 |
| 4. |
Olga Balkanova, Dmitry Frolenkov, “A Voronoi summation formula for non-holomorphic Maass forms of half-integral weight”, Monatsh. Math., 203 (2024), 733–764 |
| 5. |
O. Balkanova, D. Frolenkov, “An explicit formula for the second moment of Maass form symmetric square $L$-functions”, Publ. Mat., 67:2 (2023), 611–660 |
| 6. |
Olga Balkanova, Dmitry Frolenkov, “The second moment of symmetric square $L$-functions over Gaussian integers”, Proc. R. Soc. Edinb., Sect. A, Math., 152:1 (2022), 54–80 , arXiv: 2008.13399
|
2
[x]
|
| 7. |
Olga Balkanova, Dmitry Frolenkov, Morten S. Risager, “Prime geodesics and averages of the Zagier $L$-series”, Math. Proc. Camb. Philos. Soc., 172:3 (2022), 705-728 , arXiv: 1912.05277
|
4
[x]
|
| 8. |
Olga Balkanova, Dmitry Frolenkov, “Non-vanishing of Maass form symmetric square $L$-functions”, J. Math. Anal. Appl., 500:2 (2021), 125148 , 23 pp.
|
1
[x]
|
| 9. |
Olga Balkanova, Dmitry Frolenkov, “Moments of $L$-functions and the Liouville–Green method”, J. Eur. Math. Soc. (JEMS), 23:4 (2021), 1333–1380 , arXiv: 1610.03465
|
8
[x]
|
| 10. |
O. Balkanova, G. Bhowmik, D. Frolenkov, N. Raulf, “Mixed moment of $GL(2)$ and $GL(3)$ $L$-functions”, Proc. London Math. Soc. (3), 121:2 (2020), 177–219 , arXiv: 1811.03553
|
2
[x]
|
| 11. |
Dmitry Frolenkov, “The cubic moment of automorphic $L$-functions in the weight aspect”, J. Number Theory, 207:2 (2020), 247–281
|
11
[x]
|
| 12. |
D. A. Frolenkov, “Nondiagonal terms in the second moment of automorphic $L$-functions”, Sb. Math., 211:8 (2020), 1171–1189 |
| 13. |
Olga Balkanova, Dmitry Frolenkov, “Prime geodesic theorem for the Picard manifold”, Adv. Math., 375 (2020), 107377 , 42 pp., arXiv: 1804.00275
|
5
[x]
|
| 14. |
Olga Balkanova, Dmitry Frolenkov, “Bounds for a spectral exponential sum”, J. London Math. Soc., 99:2 (2019), 249–272 , arXiv: 1803.04201
|
6
[x]
|
| 15. |
Olga Balkanova, Dimitrios Chatzakos, Giacomo Cherubini, Dmitry Frolenkov, Niko Laaksonen, “Prime geodesic theorem in the 3-dimensional hyperbolic space”, Trans. Amer. Math. Soc., 372:8 (2019), 5355–5374 , arXiv: 1712.00880
|
10
[x]
|
| 16. |
Olga Balkanova, Gautami Bhowmik, Dmitry Frolenkov, Nicole Raulf, “A mean value result for a product of $GL(2)$ and $GL(3)$ $L$-functions”, Mathematika, 65:3 (2019), 743–762 , arXiv: 1710.01388
|
3
[x]
|
| 17. |
Olga Balkanova, Dmitry Frolenkov, “Sums of Kloosterman sums in the prime geodesic theorem”, Q. J. Math., 70:2 (2019), 649–674 , arXiv: 1803.04206
|
8
[x]
|
| 18. |
Olga Balkanova, Dmitry Frolenkov, “Convolution formula for the sums of generalized Dirichlet L-functions”, Rev. Mat Iberoam, 35:7 (2019), 1973–1995 , arXiv: 1709.01365
|
4
[x]
|
| 19. |
Olga Balkanova, Dmitry Frolenkov, “Non-vanishing of automorphic $L$-functions of prime power level”, Monatsh. Math., 185:1 (2018), 17–41 , arXiv: 1605.02434
|
2
[x]
|
| 20. |
Olga Balkanova, Dmitry Frolenkov, “The mean value of symmetric square $L$-functions”, Algebra Number Theory, 12:1 (2018), 35–59 , arXiv: 1610.06331
|
14
[x]
|
| 21. |
Olga Balkanova, Dmitry Frolenkov, “New error term for the fourth moment of automorphic $L$-functions”, J. Number Theory, 173 (2017), 293–303
|
1
[x]
|
| 22. |
V. A. Bykovskii, D. A. Frolenkov, “Asymptotic formulae for the second moments of $L$-series of holomorphic cusp forms on the critical line”, Izv. Math., 81:2 (2017), 239–268 |
| 23. |
Olga G. Balkanova, Dmitry A. Frolenkov, “On the binary additive divisor problem”, Proc. Steklov Inst. Math., 299 (2017), 44–49 |
| 24. |
V. A. Bykovskii, D. A. Frolenkov, “The average length of finite continued fractions with fixed denominator”, Sb. Math., 208:5 (2017), 644–683 |
| 25. |
Olga Balkanova, Dmitry Frolenkov, “The first moment of cusp form $L$-functions in weight aspect on average”, Acta Arith., 181:3 (2017), 197–208 , arXiv: 1703.00742
|
2
[x]
|
| 26. |
Olga G. Balkanova, Dmitry A. Frolenkov, “A uniform asymptotic formula for the second moment of primitive $L$-functions on the critical line”, Proc. Steklov Inst. Math., 294 (2016), 13–46 |
| 27. |
V. A. Bykovskii, D. A. Frolenkov, “Some integral representations of hypergeometric function”, FEMJ, 15:1 (2015), 38–40 |
| 28. |
D. A. Frolenkov, “On the uniform bounds on hypergeometric function”, Dal'nevost. Mat. Zh., 15:2 (2015), 289–298 |
| 29. |
V. A. Bykovskii, D. A. Frolenkov, “On the second moment of L-series of holomorphic cusp forms on the critical line”, Dokl. Math., 92:1 (2015), 417–420 |
| 30. |
V. A. Bykovskii, D. A. Frolenkov, “Asymptotic formula for the convolution of a generalized divisor function”, Dokl. Math., 92:3 (2015), 670–673 |
| 31. |
I. D. Kan, D. A. Frolenkov, “A strengthening of a theorem of Bourgain and Kontorovich”, Izv. Math., 78:2 (2014), 293–353 |
| 32. |
D. A. Frolenkov, I. D. Kan, “A strengthening of a theorem of Bourgain–Kontorovich II”, Moscow J. Combin. Number Theory, 4:1 (2014), 78–117 |
| 33. |
D. A. Frolenkov, K. Soundararajan, “A generalization of the Pólya–Vinogradov inequality”, Ramanujan J., 31:3 (2013), 271–279
|
17
[x]
|
| 34. |
D. A. Frolenkov, “The mean value of Frobenius numbers with three arguments”, Izv. Math., 76:4 (2012), 760–819 |
| 35. |
D. A. Frolenkov, “Asymptotic behaviour of the first moment of the number of steps in the by-excess and by-deficiency Euclidean algorithms”, Sb. Math., 203:2 (2012), 288–305 |
| 36. |
D. A. Frolenkov, “A numerically explicit version of the Pólya-Vinogradov inequality”, Mosc. J. Comb. Number Theory, 1:3 (2011), 25–41 |
|