A.V. Zvyagin, “Weak solvability and convergence of solutions for the fractional Voigt-α model of a viscoelastic medium”, Russian Math. Surveys, 74:3 (2019), 549-551.
A.V. Zvyagin, “Attractors for model of polymer solutions motion”, Discrete and Continuous Dynamical Systems, 28:12 (2018), 6305-6325.
A.V. Zvyagin, “Solvability for equations of motion of weak aqueous polymer solutions with objective derivative”, Nonlinear Analysis: Theory, Methods and Applications, 90 (2013), 70-85.
A.V. Zvyagin, “An optimal control problem with feedback for a mathematical model of the motion of weakly concentrated water polymer solutions with objective derivative”, Siberian Mathematical Journal, 54:4 (2013), 640-655.
A. V. Zvyagin, “Weak solvability of the Navier-Stokes-Voigt thermal model with nonlinear viscosity coefficient”, Funktsional. Anal. i Prilozhen., 60:1 (2026) (to appear)
2.
A. V. Zvyagin, “Existence of weak solutions of the stationary alpha model describing the motion of polymer solutions”, Nonlocal and nonlinear problems, CMFD, 71, no. 1, PFUR, M., 2025, 96–109
3.
V. G Zvyagin., A. V. Zvyagin, V. P. Orlov, M. V. Turbin, “Weak solvability of the initial boundary value problem for the Voigt model with a smoothed Jaumann time derivative taking into account the memory of fluid motion”, Lobachevskii Journal of Mathematics, 46:3 (2025), 1183–1206
4.
A. V. Zvyagin, “On the existence of weak solutions of the Kelvin–Voigt model”, Math. Notes, 116:1 (2024), 130–135
5.
A. V. Zvyagin, V. G. Zvyagin, V. P. Orlov, “Some properties of trajectories of a nonhomogeneous velocity field of a viscoelastic fluid in a multiconnected domain”, Math. Notes, 116:4 (2024), 853–857
6.
V. G. Zvyagin, A. V. Zvyagin, V. P. Orlov, M. V. Turbin, “On the weak solvability of high-order viscoelastic fluid dynamics model”, Lobachevskii Journal of Mathematics, 45:4 (2024), 1524–1543
V. Zvyagin, V. Orlov, A. Zvyagin, “On Some Properties of Trajectories of Non-Smooth Vector Fields”, Mathematics, 12:11 (2024), 1703 , 18 pp.
8.
A. V. Zvyagin, M. I. Strukov, “On the weak solvability of a mathematical model describing the motion of polymer solutions with memory”, Differential Equations, 60:10 (2024), 1491–1496
9.
A. V. Zvyagin, E. I. Kostenko, “The problem of existence of feedback control for one nonlinear viscous fractional Voigt model”, Journal of Mathematical Sciences, 292:1 (2025), 64–73
10.
M. S. Bichegkuev, G. V. Garkavenko, V. G. Zadorozhnii, A. V. Zvyagin, V. G. Zvyagin, L. Yu. Kabantsova, I. A. Krishtal, V. G. Kurbatov, D. M. Polyakov, L. N. Lyakhov, N. B. Uskova, “K 80-letiyu Anatoliya Grigorevicha Baskakova”, Vestnik VGU. Seriya: Fizika. Matematika., 2024, no. 3, 83–88
11.
A. V. Zvyagin, “Uniform attractors for non-autonomous systems of nonlinearly viscous fluid”, Lobachevskii Journal of Mathematics, 44:3 (2023), 956–968
A. V. Zvyagin, E. I. Kostenko, “On the existence of feedback control for one fractional Voigt model”, Differential Equation, 59:12 (2023), 1778–1783
14.
A. V. Zvyagin, E. I. Kostenko, “The existence problem of feedback control for one fractional Voigt model”, Journal of Mathematical Sciences, 285:6 (2024), 795–815
15.
A. V. Zvyagin, “Weak Solvability of the Nonlinearly Viscous Pavlovskii Model”, Russian Mathematics, 66:6 (2022), 73–78
16.
A. Zvyagin, “Solvability of the non-linearly viscous polymer solutions motion model”, Polymers, 14:6 (2022), 1264 , 23 pp.
A. V. Zvyagin, “Investigation of the weak solubility of the fractional Voigt alpha-model”, Izv. Math., 85:1 (2021), 61–91
18.
V. G. Zvyagin, A. V. Zvyagin, N. M. Hong, “Optimal Feedback Control for a Model of Motion of a Nonlinearly Viscous Fluid”, Differential Equations, 57:1 (2021), 122–126
19.
A. Ashyralyev, V. Zvyagin, A. Zvyagin, “About optimal feedback control problem for motion model of nonlinearly viscous fluid”, AIP Conference Proceedings. ICAAM 2020, 2325 (2021), 020003 , 4 pp.
20.
A. V. Zvyagin, “An alpha-model of polymer solutions motion”, Russian Mathematics, 65:5 (2021), 21–29
21.
D. M. Polyakov, A. Zvyagin, “Dissipative solvability of Jeffreys-Oldroud-α model”, Topological Methods in Nonlinear Analysis, 57:2 (2021), 465–488
22.
A. V. Zvyagin, V. G. Zvyagin, “Weak solvability of termo-Voigt-α model”, Lobachevskii Journal of Mathematics, 42:15 (2021), 3793–3809
23.
V. G. Zvyagin, A. V. Zvyagin, N. M. Hong, “Optimal feedback control for one motion model of a nonlinearly viscous fluid”, Chebyshevskii Sbornik, 21:2 (2020), 144–158
24.
A. V. Zvyagin, “Navier-Stokes-Alpha Model with Temperature-Dependent Viscosity”, Doklady Mathematics, 101:2 (2020), 122–125
25.
V. Zvyagin, A. Zvyagin, A. Ustiuzhaninova, “Optimal feedback control problem for the fractional Voigt-α model”, Mathematics, 8:7, Special Issue “Recent Investigations of Differential and Fractional Equations and Inclusions” (2020), 1197 , 27 pp.
A. V. Zvyagin, “Solvability of a Thermoviscoelastic Model of the Motion of Solutions of Polymers Satisfying the Objectivity Principle”, Math. Notes, 105:6 (2019), 831–845
27.
A. V. Zvyagin, “Weak solvability and convergence of solutions for the fractional Voigt-$\alpha$ model of a viscoelastic medium”, Russian Math. Surveys, 74:3 (2019), 549–551
28.
A. V. Zvyagin, V. G. Zvyagin, D. M. Polyakov, “Dissipative solvability of an alpha model of fluid flow with memory”, Computational Mathematics and Mathematical Physics, 59:7 (2019), 1185–1198
29.
A. V. Zvyagin, “Optimal Feedback Control for Leray and Navier-Stokes Alpha Models”, Doklady Mathematics, 99:3 (2019), 299–302
30.
A. V. Zvyagin, “Weak Solvability of Kelvin–Voigt Model of Thermoviscoelasticity”, Russian Mathematics, 62:3 (2018), 79–83
31.
A. V. Zvyagin, V. G. Zvyagin, D. M. Polyakov, “On solvability of one alpha-model of fluid motion with memory”, Russian Math. (Iz. VUZ), 62:6 (2018), 69–74
32.
V. G. Zvyagin, A. V. Zvyagin, “Optimal feedback control for a thermoviscoelastic model of the motion of water polymer solutions”, Siberian Adv. Math., 29:2 (2019), 137–152
33.
A. V. Zvyagin, “Study of solvability of a thermoviscoelastic model describing the motion of weakly concentrated water solutions of polymers”, Siberian Math. J., 59:5 (2018), 843–859
34.
A. V. Zvyagin, “Attractors for model of polymer solutions motion”, Discrete and Continuous Dynamical Systems, 28:12 (2018), 6305–6325
A. V. Zvyagin, “Solvability of one class of thermo-visco-elastic–models”, AIP Conference Proceedings. ICAAM 2018., 1997 (2018), 020078 , 5 pp.
36.
V. G. Zvyagin, A. V. Zvyagin, M. V. Turbin, “Optimal Feedback Control Problem for the Bingham Model with Periodical Boundary Conditions on Spatial Variables”, Journal of Mathematical Sciences, 244 (2020), 959–980
37.
A. V. Zvyagin, D. M. Polyakov, “Issledovanie dissipativnoi razreshimosti alfa-modeli maksvella”, Tavricheskii vestnik informatiki i matematiki, 2018, no. 4, 67–89
38.
A. V. Zvyagin, “O razreshimosti alfa-modeli dvizheniya rastvorov polimerov”, Vestnik VGU. Seriya: Fizika, Matematika, 2018, no. 4, 113–115
39.
A. V. Zvyagin, V. G. Zvyagin, “Pullback attractors for a model of weakly concentrated aqueous polymer solution motion with a rheological relation satisfying the objectivity principle”, Doklady Mathematics, 95:3 (2017), 247–249
40.
V. G. Zvyagin, A. V. Zvyagin, M. V. Turbin, “Ob odnom variante approksimatsionno-topologicheskogo metoda issledovaniya slaboi razreshimosti sistemy Nave-Stoksa”, Vestnik VGU. Seriya: Fizika. Matematika, 2017, no. 3, 104–124
41.
V. G. Zvyagin, A. V. Zvyagin, M. V. Turbin, “Variant approksimatsionno-topologicheskogo metoda issledovaniya slaboi razreshimosti sistemy Nave-Stoksa na osnove parabolicheskoi regulyarizatsii”, Vestnik VGU. Seriya: Fizika. Matematika, 2017, no. 3, 125–142
42.
A. V. Zvyagin, “Solvability of thermoviscoelastic problem for Leray alpha-model”, Russian Math. (Iz. VUZ), 60:10 (2016), 59–63
43.
A. V. Zvyagin, D. M. Polyakov, “On the solvability of the Jeffreys-Oldroyd-α model”, Differential Equations, 52:6 (2016), 761–766
44.
A. V. Zvyagin, “Optimal feedback control for a thermoviscoelastic model of Voigt fluid motion”, Doklady Mathematics, 93:3 (2016), 270–272
45.
V. G. Zvyagin, A. V. Zvyagin, “Pullback attractors for a model of polymer solutions motion with rheological relation satisfying the objectivity principle”, Journal of Mathematical Sciences, 248 (2020), 600–620
46.
A. V. Zvyagin, V. G. Zvyagin, D. M. Polyakov, “Razreshimost alfa-modelei gidrodinamiki”, Vestnik VGU. Seriya: Fizika. Matematika, 2 (2016), 72–93
47.
A. V. Zvyagin, V. P. Orlov, “Solvability of the Thermoviscoelasticity Problem for Linearly Elastically Retarded Voigt Fluid”, Math. Notes, 97:5 (2015), 694–708
48.
D. M. Polyakov, A. V. Zvyagin, “On dissipative solutions of the Jeffreys-Oldroyt-alpha equation”, Advancements in Mathematical Sciences, 1676 (2015), 020089 , 7 pp.
49.
A. V. Zvyagin, V. P. Orlov, “Solvability of thermoviscoelastic problem for one Oskolkovs model”, Russian Math. (Iz. VUZ), 58:9 (2014), 57–61
50.
A. V. Zvyagin, “Solvability of the stationary mathematical model of a non-newtonian fluid motion with objective derivative”, Fixed Point Theory, 15:2 (2014), 623–634
51.
V. G. Zvyagin, V. V. Obukhovskii, A. V. Zvyagin, “On inclusions with multivalued operators and their applications to some optimization problems”, Journal of Fixed Point Theory and Applications, 16:1-2 (2014), 27–82
A. V. Zvyagin, “An optimal control problem with feedback for a mathematical model of the motion of weakly concentrated water polymer solutions with objective derivative”, Siberian Math. J., 54:4 (2013), 640–655
53.
A. V. Zvyagin, “Optimal control problem for a stationary model of low concentrated aqueous polymer solutions”, Differential Equations, 49:2 (2013), 246–250
54.
A. V. Zvyagin, “Optimal feedback control in the stationary mathematical model of low concentrated aqueous polymer solutions”, Applicable Analysis, 92:6 (2013), 1157–1168
A. V. Zvyagin, “Solvability for equations of motion of weak aqueous polymer solutions with objective derivative”, Nonlinear Analysis, Theory, Methods and Applications, 90 (2013), 70–85
A. V. Zvyagin, “Attractors for a model of polymer motion with objective derivative in the rheological relation”, Doklady Mathematics, 88:3 (2013), 730–733
57.
A. V. Zvyagin, “Optimalnoe upravlenie s obratnoi svyazyu dlya odnoi statsionarnoi modeli dvizheniya zhidkosti s ob'ektivnoi proizvodnoi”, Spektralnye i evolyutsionnye zadachi, 23 (2013), 91–102
58.
A. V. Zvyagin, “Issledovanie razreshimosti odnoi statsionarnoi modeli dvizheniya nenyutonovoi zhidkosti v neogranichennoi oblasti”, Vestnik VGU. Seriya: Fizika, Matematika, 2012, no. 2, 118–121
59.
A. V. Zvyagin, “Solvability of a stationary model of motion of weak aqueous polymer solutions”, Russian Math. (Iz. VUZ), 55:2 (2011), 90–92
60.
A. V. Zvyagin, “Issledovanie razreshimosti statsionarnoi modeli dvizheniya slabykh vodnykh rastvorov polimerov”, Vestnik VGU. Seriya: Fizika. Matematika, 2011, no. 1, 147–156
61.
A. V. Zvyagin, “O korrektnoi razreshimosti nelineinyi uravnenii”, Spektralnye i evolyutsionnye zadachi, 20 (2010), 136–140
62.
A. V. Zvyagin, “Ob aksiomaticheskom podkhode k issledovaniyu svyaznosti mnozhestva reshenii operatornykh uravnenii”, Seminar po globalnomu i stokhasticheskomu analizu. Voronezhskii universitet, 2008, no. 3, 31–36
63.
A. V. Borovskikh, V. G. Zadorozhnii, A. V. Zvyagin, V. G. Zvyagin, V. G. Kurbatov, V. V. Obukhovskii, “K devyanostoletiyu Anatoliya Ivanovicha Perova”, Differentsialnye uravneniya, 60:1 (2024), 143-144