Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Zagryadskii, Oleg Aleksandrovich

E-mail:

https://www.mathnet.ru/eng/person63151
List of publications on Google Scholar

Publications in Math-Net.Ru Citations
2015
1. O. A. Zagryadskii, D. A. Fedoseev, “The global and local realizability of Bertrand Riemannian manifolds as surfaces of revolution”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2015, no. 3,  18–24  mathnet  mathscinet; Moscow University Mathematics Bulletin, 70:3 (2015), 119–124  isi  scopus 1
2. O. A. Zagryadskii, “Bertrand surfaces with a pseudo-Riemannian metric of revolution”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2015, no. 1,  66–69  mathnet  mathscinet; Moscow University Mathematics Bulletin, 70:1 (2015), 49–52  isi  scopus 1
2014
3. O. A. Zagryadskii, “The relations between the Bertrand, Bonnet, and Tannery classes”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2014, no. 6,  62–64  mathnet  mathscinet; Moscow University Mathematics Bulletin, 69:6 (2014), 277–279  scopus
2013
4. O. A. Zagryadskii, D. A. Fedoseev, “The explicit form of the Bertrand metric”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2013, no. 5,  46–50  mathnet  mathscinet; Moscow University Mathematics Bulletin, 68:5 (2013), 258–262  scopus 5
2012
5. O. A. Zagryadskii, E. A. Kudryavtseva, D. A. Fedoseev, “A generalization of Bertrand's theorem to surfaces of revolution”, Mat. Sb., 203:8 (2012),  39–78  mathnet  mathscinet  zmath  elib; Sb. Math., 203:8 (2012), 1112–1150  isi  scopus 20

Presentations in Math-Net.Ru
1. Бифуркационные диаграммы и некомпактные перестройки для гамильтоновой системы задачи Бертрана
O. A. Zagryadskii
Modern geometry methods
October 29, 2014 18:30
2. Bertrand surfaces
O. A. Zagryadskii
Modern geometry methods
April 10, 2013 18:30

Organisations