Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Zhanlav, Tugal


https://www.mathnet.ru/eng/person63974
List of publications on Google Scholar
https://mathscinet.ams.org/mathscinet/MRAuthorID/238729
https://orcid.org/0000-0003-0743-5587

Publications in Math-Net.Ru Citations
2025
1. T. Zhanlav, Yu. S. Volkov, R.-O. Mijiddorj, “Application of Steklov's method of smoothing functions to numerical differentiation and construction of local quasi-interpolation splines”, Mat. Tr., 28:2 (2025),  28–49  mathnet
2021
2. T. Zhanlav, Kh. Otgondorj, “On the optimal choice of parameters in two-point iterative methods for solving nonlinear equations”, Zh. Vychisl. Mat. Mat. Fiz., 61:1 (2021),  32–46  mathnet  elib; Comput. Math. Math. Phys., 61:1 (2021), 29–42  isi  scopus
2019
3. T. Zhanlav, Kh. Otgondorj, O. Chuluunbaatar, “Families of optimal derivative-free two- and three-point iterative methods for solving nonlinear equations”, Zh. Vychisl. Mat. Mat. Fiz., 59:6 (2019),  920–936  mathnet  elib; Comput. Math. Math. Phys., 59:6 (2019), 864–880  isi  scopus 4
2017
4. T. Zhanlav, V. Ulziibayar, O. Chuluunbaatar, “Necessary and sufficient conditions for the convergence of two- and three-point Newton-type iterations”, Zh. Vychisl. Mat. Mat. Fiz., 57:7 (2017),  1093–1102  mathnet  mathscinet  elib; Comput. Math. Math. Phys., 57:7 (2017), 1090–1100  isi  scopus 8
2014
5. T. Zhanlav, O. Chuluunbaatar, V. Ulziibayar, “A brief description of two-sided approximation for some Newton’s type methods”, Mat. Model., 26:11 (2014),  71–77  mathnet  mathscinet  elib
2012
6. T. Zhanlav, D. Hongorzul, “The behavior of the convergence of the combined iteration method for solving nonlinear equations”, Zh. Vychisl. Mat. Mat. Fiz., 52:5 (2012),  790–800  mathnet 2
2009
7. T. Zhanlav, O. Chuluunbaatar, “Convergence of a continuous analog of Newton's method for solving nonlinear equations”, Num. Meth. Prog., 10:4 (2009),  402–407  mathnet
2008
8. T. Zhanlav, R.-O. Mijiddorj, “Integro cubic splines and their approximation properties”, Vestnik TVGU. Ser. Prikl. Matem. [Herald of Tver State University. Ser. Appl. Math.], 2008, no. 10,  65–77  mathnet  elib
9. T. Zhanlav, R.-O. Mijiddorj, O. Chuluunbaatar, “A continuous analog of Newton's method”, Vestnik TVGU. Ser. Prikl. Matem. [Herald of Tver State University. Ser. Appl. Math.], 2008, no. 9,  27–37  mathnet  elib 1
1994
10. T. Zhanlav, I. V. Puzynin, “The combination of the establishment method and Newton's method for solving nonlinear differential problems”, Zh. Vychisl. Mat. Mat. Fiz., 34:2 (1994),  175–184  mathnet  mathscinet  zmath; Comput. Math. Math. Phys., 34:2 (1994), 143–150  isi 3
1992
11. T. Zhanlav, I. V. Puzynin, “The convergence of iterations based on a continuous analogue of Newton's method”, Zh. Vychisl. Mat. Mat. Fiz., 32:6 (1992),  846–856  mathnet  mathscinet  zmath; Comput. Math. Math. Phys., 32:6 (1992), 729–737  isi 13
12. T. Zhanlav, I. V. Puzynin, “An evolutionary Newton procedure for solving nonlinear equations”, Zh. Vychisl. Mat. Mat. Fiz., 32:1 (1992),  3–12  mathnet  mathscinet  zmath; Comput. Math. Math. Phys., 32:1 (1992), 1–9  isi 1
1991
13. T. Zhanlav, “A high-accuracy three-point spline scheme”, Zh. Vychisl. Mat. Mat. Fiz., 31:1 (1991),  40–51  mathnet  mathscinet  zmath; U.S.S.R. Comput. Math. Math. Phys., 31:1 (1991), 28–36  isi

Organisations