optimality conditions,
degenerated control systems,
covering mappings,
mathematical models in economics,
equilibrium prices.
Subject:
Optimal control theory, extremal problems, nonlinear analysis, theory of covering mappings and its applications in mathematical economics
Main publications:
A.V. Arutyunov, N.G. Pavlova, “Topological properties of attainability sets of linear systems”, Differential Equations, 40:11 (2004), 1645–1648
N.G. Pavlova, “2-regularity and 2-normality conditions for systems with impulsive controls”, Yugoslav Journal of Operations Research, 17:2 (2007), 149–164
A.V. Arutyunov, S.E. Zhukovskiy, N.G. Pavlova, “Equilibrium price as a coincidence point of two mappings”, Zh. Vychisl. Mat. Mat. Fiz., 53:2 (2013), 225–237
A.V. Arutyunov, N.G. Pavlova, A.A. Shananin, “Equilibrium prices in an economic equilibrium model”, Matem. Mod., 28:3 (2016), 3–22
N.G. Pavlova, A.O. Remizov, “On isomorphisms of pseudo-Euclidean spaces with signature (p,n − p) for p = 2,3”, Linear Algebra and its Applications, 2018, № 541, 60–80
N. D. Pazij, N. G. Pavlova, “Local analytic classification for quasi-linear implicit differential systems at transversal singular points”, J. Dyn. Control Syst., 28:3 (2022), 453–464
A. V. Arutyunov, N. G. Pavlova, “Equilibrium in market models described by differential equations”, Differ. Equ., 58:9 (2022), 1267–1276
5.
N. G. Pavlova, A. O. Remizov, “Oscillating and proper solutions of singular quasi-linear differential equations”, Adv. Syst. Sci. Appl., 22:4 (2022), 51–64
2021
6.
N. G. Pavlova, A. O. Remizov, “Hyperbolic Roussarie fields with degenerate quadratic part”, Russian Math. Surveys, 76:2 (2021), 366–368
7.
N. G. Pavlova, A. O. Remizov, “Smooth Local Normal Forms of Hyperbolic Roussarie Vector Fields”, Moscow Math. Journal, 21:2 (2021), 413–426
A. V. Arutyunov, A. M. Kotyukov, N. G. Pavlova, “Equilibrium in Market Models with Known Elasticities”, Adv. Syst. Sci. Appl., 21:4 (2021), 130–144 "article.pdf"
2020
9.
A. M. Kotyukov, S. O. Nikanorov, N. G. Pavlova, “Local Normal Forms of Autonomous Quasi-Linear Constrained Differential Systems”, Adv. Syst. Sci. Appl., 20:1 (2020), 119–127 "article.pdf"
10.
N. G. Pavlova, “Applications of the Theory of Covering Maps to the Study of Dynamic Models of Economic Processes with Continuous Time”, Mathematical Analysis With Applications (CONCORD-90, Ekaterinburg, Russia 2018), Springer Proc. in Math. & Stat., 318, Springer, 2020, 123–129
N. G. Pavlova, A. O. Remizov, “Completion of the classification of generic singularities of geodesic
flows in two classes of metrics”, Izv. Math., 83:1 (2019), 104–123
12.
N. G. Pavlova, “Study of the Continuous-Time Open Dynamic Leontief Model as a Linear Dynamical Control System”, Differ. Equ., 55:1 (2019), 113–119
2018
13.
N. G. Pavlova, A. O. Remizov, “On isomorphisms of pseudo-Euclidean spaces with signature (p,n-p) for p = 2,3”, Linear Algebra Appl., 541 (2018), 60–80
14.
N. G. Pavlova, A. O. Remizov, “A brief survey on singularities of geodesic flows in smooth signature changing metrics on 2-surfaces”, Advances in Singularities and Foliations: Geometry, Topology and Applications (Salvador, Brazil, 2015), Springer Proc. in Math. & Stat., 222, Springer, 2018, 135–155
15.
A. V. Arutyunov, N. G. Pavlova, A. A. Shananin, “New conditions for the existence of equilibrium prices”, Yugosl. J. Oper. Res., 28:1 (2018), 59–77
N. G. Pavlova, “Zamknutost tekhnologicheskogo mnozhestva v dinamicheskikh proizvodstvennykh modelyakh”, Vestnik Tambovskogo un-ta. Seriya: estestv. i tekhn. nauki, 23:124 (2018), 666–673
17.
N. G. Pavlova, “Necessary conditions for closedness of the technology set in dynamical Leontief model”, Eleventh International Conference “Management of large-scale system development” (MLSD) (Moskva, 1–3 oktyabrya 2018, IPU RAN), IEEE, 2018, 1–4
N. G. Pavlova, A. O. Remizov, “A complete classification of generic singularities of geodesic flows on 2-surfaces with pseudo-Riemannian metrics”, Russian Math. Surveys, 72:3 (2017), 577–579
19.
A. N. Kurbatskii, N. G. Pavlova, A. O. Remizov, “Singularities of geodesic flows and lines in pseudo-Finsler spaces. III”, Tambov University Reports. Series: Natural and Technical Sciences, 22:3 (2017), 539–551
20.
N. G. Pavlova, “On the application of the results of covering mappings theory for the study of dynamical models of economic processes”, Tambov University Reports. Series: Natural and Technical Sciences, 22:6 (2017), 1304–1308
2016
21.
A. V. Arutyunov, N. G. Pavlova, A. A. Shananin, “Equilibrium prices in an economic equilibrium model”, Matem. Mod., 28:3 (2016), 3–22
22.
N. G. Pavlova, E. S. Belyakova, “O polozhenii ravnovesiya v modelyakh ekonomicheskogo ravnovesiya s tranzaktsionnymi izderzhkami”, Vestnik Tambovskogo un-ta. Seriya: estestv. i tekhn. nauki, 21:1 (2016), 9–16
2015
23.
N. G. Pavlova, O. M. Bozhinskaya, “O topologicheskikh svoistvakh tekhnologicheskogo mnozhestva v dinamicheskoi modeli Leonteva s nepreryvnym vremenem”, Vestnik Tambovskogo un-ta. Seriya: estestv. i tekhn. nauki, 20:5 (2015), 1071–1078
2014
24.
N. G. Pavlova, A. E. Bolotin, “Prilozhenie teorii nakryvayuschikh otobrazhenii k issledovaniyu modeli Errou–Debre s tranzaktsionnymi izderzhkami”, Vestnik Tambovskogo un-ta. Seriya: estestv. i tekhn. nauki, 19:2 (2014), 357–364
25.
N. G. Pavlova, A. E. Bolotin, “Dostatochnye usloviya suschestvovaniya polozheniya ravnovesiya v modeli “spros-predlozhenie””, Vestnik Tambovskogo un-ta. Seriya: estestv. i tekhn. nauki, 19:2 (2014), 349–356
2013
26.
A. V. Arutyunov, S. E. Zhukovskiy, N. G. Pavlova, “Equilibrium price as a coincidence point of two mappings”, Comput. Math. Math. Phys., 53:2 (2013), 158–169
27.
N. G. Pavlova, “Issledovanie ekonomicheskikh modelei metodami teorii nakryvayuschikh otobrazhenii”, Vestnik Tambovskogo un-ta. Seriya: estestv. i tekhn. nauki, 18:5-2 (2013), 2621–2624
28.
S. E. Zhukovskii, N. G. Pavlova, “O prilozhenii teorii nakryvayuschikh otobrazhenii k issledovaniyu nelineinoi modeli rynka”, Vestnik Tambovskogo un-ta. Seriya: estestv. i tekhn. nauki, 18:1 (2013), 47–48
2011
29.
N. G. Pavlova, A. O. Remizov, “Geodesics on hypersurfaces in Minkowski space: singularities of signature change”, Russian Math. Surveys, 66:6 (2011), 1201–1203
30.
N. G. Pavlova, “Upravlyaemost traektorii v zadachakh optimalnogo upravleniya s fazovymi ogranicheniyami”, Vestnik Tambovskogo un-ta. Seriya: estestv. i tekhn. nauki, 16:4 (2011), 1140–1142
2010
31.
N. G. Pavlova, “Usloviya optimalnosti i upravlyaemosti dlya dinamicheskikh impulsnykh sistem”, Vestnik Tambovskogo un-ta. Seriya: estestv. i tekhn. nauki, 15:4 (2010), 692–695
2009
32.
N. G. Pavlova, “Lokalnaya upravlyaemost dinamicheskikh impulsnykh sistem”, Vestnik Tambovskogo un-ta. Seriya: estestv. i tekhn. nauki, 14:4 (2009), 714–715
33.
N. G. Pavlova, “Neobkhodimye usloviya ekstremuma dlya 2-normalnykh protsessov”, Vestnik RUDN. Seriya: Matematika, informatika, fizika., 2009, no. 1, 5–13 "Vestnik RUDN"
2008
34.
A. V. Arutyunov, N. G. Pavlova, “Lokalnaya upravlyaemost dinamicheskikh sistem s impulsnymi upravleniyami”, Differents. uravneniya, 44:8 (2008), 1145–1146
2007
35.
N. G. Pavlova, “2-regularity and 2-normality conditions for systems with impulsive controls”, Yugosl. J. Oper. Res., 17:2 (2007), 149–164
36.
N. G. Pavlova, “Neobkhodimye i dostatochnye usloviya ekstremuma dlya zadach optimalnogo impulsnogo upravleniya”, Vestnik Voronezhskogo un-ta. Seriya: fizika, matematika, 2007, no. 1, 105–111 "Vestnik VGU"
2004
37.
A. V. Arutyunov, N. G. Pavlova, “Topological properties of attainability sets of linear systems”, Differ. Equ., 40:11 (2004), 1645–1648