| List of publications: |
|
|
Citations (Crossref Cited-By Service + Math-Net.Ru) |
|
|
| 1. |
A. G. Chechkina, “Homogenization of spectral problems with singular perturbation of the Steklov condition”, Izv. Math., 81:1 (2017), 199–236 |
| 2. |
A.G. Chechkina, “On Singular Perturbations of a Steklov-Type Problem with Asymptotically Degenerate Spectrum”, Doklady Mathematics, 84:2 (2011), 695–698 |
| 3. |
Yu. A. Alkhutov, A. G. Chechkina, “Many-dimensional Zaremba problem for an inhomogeneous $p$-Laplace equation”, Dokl. Math., 106:1 (2022), 243–246 |
| 4. |
V. A. Sadovnichii, A. G. Chechkina, “On estimate of eigenfunctions of the Steklov-type problem with a small parameter in the case of a limit spectrum degeneration”, Ufimsk. Mat. Zh., 3:3 (2011), 127–139 |
| 5. |
A. G. Chechkina, “On the Zaremba problem for the $p$-elliptic equation”, Sb. Math., 214:9 (2023), 1321–1336 |
| 6. |
A. G. Chechkina, V. A. Sadovnichy, “Degeneration of Steklov–type boundary conditions in one spectral homogenization problem”, Eurasian Math. J., 6:3 (2015), 13–29
|
3
[x]
|
| 7. |
A. G. Chechkina, “Operator estimates for the Steklov problem in an unbounded domain with rapidly changing conditions on the boundary”, Dokl. Math., 104:1 (2021), 205–207 |
| 8. |
Yu. A. Alkhutov, M. D. Surnachev, A. G. Chechkina, “On the Zaremba problem for inhomogeneous $p$-Laplace equation with drift”, Dokl. Math., 111:1 (2025), 1–5 |
| 9. |
Yu. A. Alkhutov, C. D. Apice, M. A. Kisatov, A. G. Chechkina, “On higher integrability of the gradient of solutions to the Zaremba problem for $p$-Laplace equation”, Dokl. Math., 108:1 (2023), 282–285 |
| 10. |
A.G. Chechkina, “Weakly singular Steklov condition in the multidimensional case”, Doklady Mathematics, 105:2 (2022), 127–130 |
| 11. |
A. G. Chechkina, “Weakly singular Steklov condition in the multidimensional case”, Dokl. Math., 105:2 (2022), 127–130 |
| 12. |
A.G. Chechkina, “Slabo singulyarnoe vozmuschenie zadachi Steklova”, Mezhdunarodnaya konferentsiya “Differentsialnye uravneniya i smezhnye voprosy”, posvyaschennaya vydayuschemusya matematiku I.G. Petrovskomu (XXIV-e sovmestnoe zasedanie Moskovskogo matematicheskogo obschestva i Seminara imeni I.G. Petrovskogo). Tezisy dokladov (Moskva, 6–30 dekabrya 2021), Lenand, 2022, 341–343 |
| 13. |
A.G. Chechkina, “O povyshennoi summiruemosti gradienta resheniya zadachi Zaremby dlya neodnorodnogo uravneniya p-Laplasa”, Mezhdunarodnaya konferentsiya po differentsialnym uravneniyam i dinamicheskim sistemam DIFF-2022. Tezisy dokladov. (Suzdal, 30 iyunya –5 iyulya 2022), Arkaim, Vladimir, 2022, 198–199 |
| 14. |
A.G. Chechkina, “On p-Laplacian with rapidly changing boundary conditions”, O. A. Ladyzhenskaya centennial conference on PDE’s Book of Abstracts (Sankt-Peterburg, 16–22 iyulya 2022), OOO “Izdatelstvo VVM”, 2022, 77–78 |
| 15. |
A.G. Chechkina, “On the Behavior of the Spectrum of a Perturbed Steklov Boundary Value Problem with a Weak Singularity”, Differential Equations, 57:10 (2021), 1382–1395 |
| 16. |
Aleksandra Chechkina, Ciro D'Apice, Umberto De Maio, “Operator estimates for elliptic problem with rapidly alternating Steklov boundary condition”, Journal of Computational and Applied Mathematics, 376:10 (2020) |
| 17. |
Aleksandra Chechkina, Ciro D'Apice, Umberto De Maio, “Rate of Convergence of Eigenvalues to Singularly Perturbed Steklov-Type Problem for Elasticity System”, Applicable Analysis, 98:1–2 (2019), 32–44 |
| 18. |
A.G. Chechkina, “Operatornye otsenki dlya zadach s ostsilliruyuschim kraevym usloviem Steklova”, Sovremennye problemy matematiki i mekhaniki. Materialy mezhdunarodnoi konferentsii, posvyaschennoi 80-letiyu akademika V. A. Sadovnichego (MGU im. M.V. Lomonosova, Rossiya, 13–15 maya 2019), OOO “MAKS Press”, 2019, 182–184 |
| 19. |
A.G. Chechkina, “Homogenization of the Steklov spectral problem for the system of elasticity”, Book of Abstracts, II International conference Multiscale Methods and Large-scale Scientific Computing (Moskva, 15–17 avgusta 2018), Izd-vo IVM RAN, 2018, 8–9 |
| 20. |
A.G. Chechkina, “Homogenization of the Steklov Problem for Elliptic Equation”, Book of abstracts, International conference Multiscale and High-performance Computing for Multiphysical Problems (Yakutsk, 8–10 avgusta 2018), Izd-vo Severo-Vostochnogo Federalnogo Universiteta imeni M.K.Ammosova, 2018, 7–10 |
| 21. |
A.G. Chechkina, “Estimate of the spectrum deviation of the singularly perturbed Steklov problem”, Doklady Mathematics, 96:2 (2017), 510–513 |
| 22. |
A.G. Chechkina, “O pervoi nauchnoi rabote S.L. Soboleva”, Sbornik tezisov dokladov mezhdunarodnoi shkoly-konferentsii “Sobolevskie chteniya” (Novosibirsk, 20–23 avgusta 2017), Izd-vo Instituta matematiki im. S.L.Soboleva SO RAN, 2017, 26 |
| 23. |
A.G. Chechkina, “O mnogomernoi zadache Steklova s singulyarnym vyrozhdeniem”, Sbornik tezisov dokladov mezhdunarodnoi konferentsii “Matematika v sovremennom mire”, posvyaschennoi 60-letiyu Instituta matematiki im. S. L. Soboleva (Novosibirsk, 14–19 avgusta 2017), Izd-vo Instituta matematiki im. S.L.Soboleva SO RAN, 2017, 259 |
| 24. |
Chechkina A., Pankratova I., Pettersson K., “Spectral asymptotics for a singularly perturbed fourth order locally periodic elliptic operator”, Asymptotic Analysis, 93:1–2 (2015), 141–160 |
| 25. |
Chechkina A., Pankratova I., Pettersson K., Spectral asymptotics for a singularly perturbed fourth order locally periodic self-adjoint elliptic operator, 2014 , 18 pp., arXiv: 1408.3627v2 |
| 26. |
A.G. Chechkina, “Vyrozhdayuschiesya zadachi Steklova s mikroneodnorodnoi strukturoi”, Sbornik tezisov dokladov mezhdunarodnoi konferentsii «Differentsialnye uravneniya, funktsionalnye prostranstva, teoriya priblizhenii», posvyaschennoi 105-letiyu S.L.Soboleva (g. Novosibirsk), Izd-vo Instituta matematiki im. S.L.Soboleva SO RAN, 2013, 289 |
| 27. |
A.G. Chechkina, “Teorema usredneniya dlya ellipticheskogo uravneniya vtorogo poryadka s bystroi neperiodicheskoi smenoi tipa granichnykh uslovii”, Matematicheskie metody resheniya inzhenernykh zadach, 2010, 88–108 |
| 28. |
A.G. Chechkina, “Homogenization problems for the second order elliptic equation with aperiodic rapidly alternating inhomogeneous boundary conditions”, Narvik University College R&D Report, 2010, no. 1, 1–17 |
| 29. |
A.G. Chechkina, “Convergence of solutions and eigenelements of Steklov type boundary value problems with boundary conditions of rapidly varying type”, Journal of Mathematical Sciences, 162:3 (2009), 443–458 |
| 30. |
A. G. Chechkina, “The Boyarsky-Meyers inequality for solutions to p-elliptic equation with lower terms and Zaremba boundary condition. Critical case.”, Mat. Zametki |
| 31. |
A. G. Chechkina, “On the estimate for the spectral function of the Zaremba problem for the Laplacian”, Dokl. RAN. Math. Inf. Proc. Upr., 524 (2025), 56–60 |
| 32. |
A. G. Chechkina, “On increased summability of the solution to the dirichlet problem for a second-order linear elliptic equation with drift”, Applied Mathematics & Physics, 56:2 (2024), 124–135 |
| 33. |
Yu. A. Alkhutov, A. G. Chechkina, “On the Boyarsky–Meyers estimate for the gradient of the solution to the Dirichlet problem for a second-order linear elliptic equation with drift: The case of critical Sobolev exponent”, Dokl. Math., 109:2 (2024), 170–174 |
|