Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Zemskov, Andrei Vladimirovich

Statistics Math-Net.Ru
Total publications: 15
Scientific articles: 15

Number of views:
This page:559
Abstract pages:2532
Full texts:827
References:449
Associate professor
Doctor of physico-mathematical sciences (2018)
Speciality: 01.02.04 (Mechanics of deformable solids)
Birth date: 17.04.1975
E-mail:
Keywords: elastic diffusion, thermoelastic diffusion, beams, rods, plates, nonstationary problems, Laplace transform

Subject:

Unsteady models of coupled field mechanics

   
Main publications:
  1. Zemskov A.V., Tarlakovskii D.V., “Modelling of rectangular Kirchhoff plate oscillations under unsteady elastodiffusive perturbations”, http://dx.doi.org/10.1007/s00707-020-02879-1, Acta Mechanica, 2021
  2. Вестяк А.В., Земсков А.В., “Модель нестационарных упругодиффузионных колебаний шарнирно закрепленной балки Тимошенко”, DOI: 10.31857/S0572329920030174, Известия российской академии наук. Механика твердого тела, 2020, № 5, 107–119
  3. Afanasieva O.A., Zemskov A.V., “Mechanodiffusion of multicomponent continuum under the action of unsteady volume perturbations”, https://link.springer.com/article/10.1134/S1995080219030028, Lobachevskii Journal of Mathematics, 40:3 (2019), 249-255
  4. Tarlakovskii D.V., Zemskov A.V., “Bulk Greens functions in two-dimensional coupled unsteady problems of elastic diffusion for orthotropic continuum”, https://link.springer.com/article/10.1134/S1995080219030181, Lobachevskii Journal of Mathematics, 40:3 (2019), 375-383
  5. Tarlakovskii D.V., Zemskov A.V., “An Elastodiffusive Orthotropic Euler-Bernoulli Beam with Considering Diffusion Flux Relaxation”, www.mdpi.com/journal/mca, https://doi.org/10.3390/mca24010023, Math. Comput. Appl., 24:1 (2019), 23

https://www.mathnet.ru/eng/person75409
List of publications on Google Scholar
List of publications on ZentralBlatt
https://elibrary.ru/author_items.asp?spin=9082-9823
ISTINA https://istina.msu.ru/workers/3263629
https://orcid.org/0000-0002-2653-6378
https://publons.com/researcher/AAD-6335-2021
https://www.webofscience.com/wos/author/record/J-3893-2013
https://www.scopus.com/authid/detail.url?authorId=56770970200

Publications in Math-Net.Ru Citations
2024
1. N. A. Zverev, A. V. Zemskov, V. M. Yaganov, “Modeling of elastic diffusion processes in a hollow cylinder under the action of unsteady volume perturbations”, Chebyshevskii Sb., 25:2 (2024),  296–317  mathnet
2. A. V. Zemskov, D. V. Tarlakovskii, “On the issue of variational formulation of problems of generalized GN-thermoelasticity”, Matem. Mod., 36:5 (2024),  19–31  mathnet
2023
3. A. V. Zemskov, D. V. Tarlakovskii, “Generalized surface Green's functions for an elastic half-space”, Izv. Vyssh. Uchebn. Zaved. Mat., 2023, no. 4,  27–36  mathnet
4. N. V. Grigorevskiy, A. V. Zemskov, A. V. Malashkin, “Modeling of elastic-diffusion vibrations of a hinged Timoshenko plate under the action of a distributed surface load”, Matem. Mod., 35:8 (2023),  31–50  mathnet; Math. Models Comput. Simul., 15:1 suppl. (2023), S96–S110
5. N. A. Zverev, A. V. Zemskov, “Modeling of unsteady elastic diffusion processes in a hollow cylinder taking into account the diffusion fluxes relaxation”, Matem. Mod., 35:1 (2023),  95–112  mathnet  mathscinet; Math. Models Comput. Simul., 15:4 (2023), 686–697 1
2022
6. N. A. Zverev, A. V. Zemskov, D. V. Tarlakovskii, “Unsteady coupled elastic diffusion processes in an orthotropic cylinder taking into account diffusion fluxes relaxation”, Izv. Vyssh. Uchebn. Zaved. Mat., 2022, no. 1,  25–37  mathnet  mathscinet; Russian Math. (Iz. VUZ), 66:1 (2022), 19–30 1
7. N. A. Zverev, A. V. Zemskov, D. V. Tarlakovskii, “Modelling one-dimensional elastic diffusion processes in an orthotropic solid cylinder under unsteady volumetric perturbations”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 26:1 (2022),  62–78  mathnet  elib 1
8. A. V. Zemskov, D. V. Tarlakovskii, “Unsteady bending of an orthotropic cantilever Timoshenko beam with allowance for diffusion flux relaxation”, Zh. Vychisl. Mat. Mat. Fiz., 62:11 (2022),  1895–1911  mathnet  elib; Comput. Math. Math. Phys., 62:11 (2022), 1912–1927 1
2020
9. N. A. Zverev, A. V. Zemskov, D. V. Tarlakovskii, “Unsteady electromagnetic elasticity of piezoelectrics considering diffusion”, Izv. Saratov Univ. Math. Mech. Inform., 20:2 (2020),  193–204  mathnet
2018
10. A. V. Vestyak, S. A. Davydov, A. V. Zemskov, D. V. Tarlakovskii, “Unsteady one-dimensional problem of thermoelastic diffusion for homogeneous multicomponent medium with plane boundaries”, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 160:1 (2018),  183–195  mathnet 2
2015
11. A. V. Zemskov, D. V. Tarlakovskii, “Two-dimensional nonstationary problem of elastic diffusion for an isotropic one-component layer”, Prikl. Mekh. Tekh. Fiz., 56:6 (2015),  102–110  mathnet  elib; J. Appl. Mech. Tech. Phys., 56:6 (2015), 1023–1030 16
12. A. V. Zemskov, D. V. Tarlakovskii, “Two-dimensional unsteady-state problem of elasticity with diffusion for isotropic one-component half-plane”, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 157:4 (2015),  103–111  mathnet  elib
2014
13. S. A. Davydov, A. V. Zemskov, D. V. Tarlakovskii, “An elastic half space under the action of one-dimensional time-dependent diffusion perturbations”, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 156:1 (2014),  70–78  mathnet 1
2013
14. A. R. Gachkevich, A. V. Zemskov, D. V. Tarlakovsky, “The one-dimensional problem of unsteady-related elastic diffusion layer”, Izv. Saratov Univ. Math. Mech. Inform., 13:4(1) (2013),  52–59  mathnet 5
2012
15. V. A. Vestyak, A. V. Zemskov, I. A. Fedorov, “The asymptotic separation of variables in thermoelastic problem for anisotropic layer with inhomogeneous boundary conditions”, Izv. Saratov Univ. Math. Mech. Inform., 12:3 (2012),  50–56  mathnet  elib 1

Organisations
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024