Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Sechkin, Georgij Mikhajlovich

Speciality: 01.01.04 (Geometry and topology)
Birth date: 29.04.1992
E-mail:
Keywords: dynamical systems; integrable Hamiltonian equations; topological invariants of dynamical systems

Subject:

Study of the foliation of an integrable system "Ellipsoid on a smooth plane"

   
Main publications:
  1. Sechkin G., “Minimal triangulations of two-dimensional manifolds”, Moscow University Mathematics Bulletin, 71:1 (2016), 7–14  crossref

https://www.mathnet.ru/eng/person75832
List of publications on Google Scholar

Publications in Math-Net.Ru Citations
2016
1. G. M. Sechkin, “Minimal triangulations of two-dimensional manifolds”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2016, no. 1,  9–16  mathnet  mathscinet; Moscow University Mathematics Bulletin, 71:1 (2016), 7–14  isi  scopus

Presentations in Math-Net.Ru
1. Матрица монодромии в задаче движении эллипсоида вращения по гладкой плоскости
G. M. Sechkin
Modern geometry methods
September 14, 2016 18:30
2. Минимальные графы на многообразиях
G. M. Sechkin
Modern geometry methods
February 24, 2016 18:30
3. Топологические инварианты движения эллипсоида по гладкой плоскости
G. M. Sechkin
Modern geometry methods
April 15, 2015 18:30
4. Механические аналогии в задаче о движении эллипсоида вращения по гладкой плоскости
G. M. Sechkin
Modern geometry methods
March 25, 2015 18:30
5. Classification of 3-dimensional surfaces in the problem of motion of a dinamically symmetrical ellipsoid on a rough surface
G. M. Sechkin
Modern geometry methods
September 10, 2014 18:30
6. Fomenko-Zieschang invariants in the problem of motion of nonhomogeneous ellipsoid of revolution with dynamic symmetry on frictionless plane
G. M. Sechkin
Differential geometry and applications
March 31, 2014 16:45
7. Integrable cases for the motion of a heavy ellipsoidal body on smooth horizontal plane
G. M. Sechkin
Modern geometry methods
November 28, 2012 18:30
8. A connection between minimal triangulations of two-dimensional manifolds and complete graphs
G. M. Sechkin
Modern geometry methods
October 24, 2012 18:30

Organisations