|
|
|
Publications in Math-Net.Ru |
Citations |
|
2024 |
| 1. |
M. V. Nikolaev, A. A. Nikitin, U. Dieckmann, “Solvability analysis of the nonlinear integral equations system arising in the logistic dynamics model in the case of piecewise constant kernels”, Dokl. RAN. Math. Inf. Proc. Upr., 515 (2024), 44–49 ; Dokl. Math., 109 (2024), 33–37 |
1
|
|
2022 |
| 2. |
M. V. Nikolaev, A. A. Nikitin, U. Dieckmann, “Stability analysis of the solution to a system of nonlinear integral equations arising in a logistic dynamics model”, Dokl. RAN. Math. Inf. Proc. Upr., 507 (2022), 46–50 ; Dokl. Math., 106:3 (2022), 445–448 |
|
2021 |
| 3. |
M. V. Nikolaev, U. Dieckmann, A. A. Nikitin, “Application of special function spaces to the study of nonlinear integral equations arising in equilibrium spatial logistic dynamics”, Dokl. RAN. Math. Inf. Proc. Upr., 499 (2021), 35–39 ; Dokl. Math., 104:1 (2021), 188–192 |
8
|
|
2020 |
| 4. |
M. V. Nikolaev, “Modified Gaudry–Schost algorithm for the two-dimensional discrete logarithm problem”, Mat. Vopr. Kriptogr., 11:2 (2020), 125–135 |
1
|
|
2015 |
| 5. |
M. V. Nikolaev, “On the complexity of two-dimensional discrete logarithm problem in a finite cyclic group with efficient automorphism”, Mat. Vopr. Kriptogr., 6:2 (2015), 45–57 |
2
|
| 6. |
M. V. Nikolaev, “On the complexity of discrete logarithm problem in an interval in a finite cyclic group with efficient inversion”, Prikl. Diskr. Mat., 2015, no. 2(28), 97–102 |
1
|
| 7. |
M. V. Nikolaev, “On the complexity of discrete logarithm problem in a finite cyclic group with the efficient inversion”, Prikl. Diskr. Mat. Suppl., 2015, no. 8, 149–151 |
|
2013 |
| 8. |
M. V. Nikolaev, D. V. Matyukhin, “On the complexity of two-dimensional discrete logarithm problem in a finite cyclic group with effective automorphism of order 6”, Diskr. Mat., 25:4 (2013), 54–65 ; Discrete Math. Appl., 23:3-4 (2013), 313–325 |
2
|
|
| Organisations |
|
|