Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Orel, Olga Evgenyevna

Statistics
in MathSciNet: 11 (11)
in zbMATH: 11 (11)
in Web of Science: 6 (6)
in Scopus: 7 (7)
Associate professor
Candidate of physico-mathematical sciences (1997)
Speciality: 01.01.04 (Geometry and topology)
Birth date: 1.09.1972
E-mail:
Keywords: invariants of the integrable hamiltonian systems, problem of global extremum.
UDC: 514.745.82, 513.944, 517.938.5, 517.946

Subject:

topology of the integrable hamiltonian systems, optimal control theory

   
Main publications:
  1. O. E. Orel, “A criterion for orbital equivalence of integrable Hamiltonian systems in the vicinity of elliptic orbits. An orbital invariant in the Lagrange problem”, Mat. Sb., 188:7 (1997), 139–160  mathnet  crossref  mathscinet  zmath; Sb. Math., 188:7 (1997), 1085–1105  crossref  isi

https://www.mathnet.ru/eng/person8289
List of publications on Google Scholar
https://mathscinet.ams.org/mathscinet/MRAuthorID/347506
https://elibrary.ru/author_items.asp?authorid=11920
ISTINA https://istina.msu.ru/workers/2545362

List of scientific publications:
| scientific publications | by years | by types | by times cited | common list |


Citations (Crossref Cited-By Service + Math-Net.Ru)
1. O. E. Orel, P. E. Ryabov, “Bifurcation sets in a problem on motion of a rigid body in fluid and in the generalization of this problem”, Regul. Chaotic Dyn., 3:2 (1998), 82–91  mathnet  crossref  mathscinet  zmath  scopus 12
2. O. E. Orel, “The Euler problem in solid body dynamics and the Jacobi problem about geodesics on an ellipsoid are not topologically conjugate”, Math. Notes, 61:2 (1997), 206–211  mathnet  crossref  crossref  mathscinet  zmath  isi  isi  elib  scopus
3. O. E. Orel, “A criterion for orbital equivalence of integrable Hamiltonian systems in the vicinity of elliptic orbits. An orbital invariant in the Lagrange problem”, Sb. Math., 188:7 (1997), 1085–1105  mathnet  crossref  crossref  mathscinet  zmath  isi  scopus
4. O. E. Orel, “Algebro-geometricheskie skobki Puassona v probleme tochnogo integrirovaniya”, Regul. Chaotic Dyn., 2:2 (1997), 90–97  mathnet  crossref  mathscinet  zmath
5. O. E. Orel, “The integrable Euler and Jacobi problems are not topologically conjugate”, Dokl. Akad. Nauk, 354:3 (1997), 307–309  mathnet  mathscinet  zmath
6. O. E. Orel, S. Takahashi, “Orbital classification of the integrable problems of Lagrange and Goryachev–Chaplygin by the methods of computer analysis”, Sb. Math., 187:1 (1996), 93–110  mathnet  crossref  crossref  mathscinet  zmath  isi  scopus
7. J. Math. Sci. (New York), 94:2 (1999), 1230–1236  mathnet  crossref  mathscinet  zmath  scopus
8. O. E. Orel, “Rotation functions in the problem of orbit classification of geodesic flows of ellipsoids and in the Euler problem of the dynamics of a rigid body”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1996, no. 1, 24–32  mathnet  mathscinet  zmath
9. O. E. Orel, “Rotation function for integrable problems reducing to the Abel equations. Orbital classification of Goryachev–Chaplygin systems.”, Sb. Math., 186:2 (1995), 271–296  mathnet  crossref  mathscinet  zmath  isi  scopus
10. O. E. Orel, “Investigation of a neighborhood of a degenerate one-dimensional orbit of the Poisson action of $\mathbb R^2$ in $M^4$”, Proc. Steklov Inst. Math., 205 (1995), 103–118  mathnet  mathscinet  zmath
11. O. E. Orel, “Topological analysis of a neighbourhood of a degenerate one-dimensional orbit of the Poisson action of $\mathbb R^2$ on the symplectic manifold $M^4$”, Russian Math. Surveys, 48:3 (1993), 176–177  mathnet  crossref  mathscinet  zmath  adsnasa  isi  scopus

Organisations