Interpolation if linear operators bound on cones in Banach spaces
Main publications:
Kaplitskii Vitalii Markovich, Dronov Alexey Konstantinovich, “Application of interpolation properties of operators bounded on cones to some problem of the theory of bases in frechet spaces”, Mathematical forum, 7 (2013), 88–103
A. K. Dronov, V. M. Kaplitskii, “On the existence of a basis in a complemented subspace of a nuclear Köthe space from class $(d_1)$”, Mat. Sb., 209:10 (2018), 50–70; Sb. Math., 209:10 (2018), 1463–1481
V. M. Kaplitskii, A. K. Dronov, “To the theory of operators that are bounded on cones in weighted spaces of numerical sequences, II”, Zap. Nauchn. Sem. POMI, 456 (2017), 107–113; J. Math. Sci. (N. Y.), 234:3 (2018), 338–342
2016
3.
A. K. Dronov, “On the existence of a basis in a complemented subspace of a nuclear Köthe space of type $d_2$”, Vladikavkaz. Mat. Zh., 18:1 (2016), 9–20
V. M. Kaplitskii, A. K. Dronov, “To the theory of operators that are bounded on cones in weighted spaces of numerical sequences”, Zap. Nauchn. Sem. POMI, 424 (2014), 154–178; J. Math. Sci. (N. Y.), 209:5 (2015), 761–777