|
|
Publications in Math-Net.Ru |
Citations |
|
2024 |
1. |
D. A. Popov, “Voronoi's formulae and the Gauss problem”, Uspekhi Mat. Nauk, 79:1(475) (2024), 59–134 ; Russian Math. Surveys, 79:1 (2024), 53–126 |
|
2022 |
2. |
M. A. Korolev, D. A. Popov, “On Jutila's integral in the circle problem”, Izv. RAN. Ser. Mat., 86:3 (2022), 3–46 ; Izv. Math., 86:3 (2022), 413–455 |
2
|
3. |
D. A. Popov, “Spectrum of the Laplace operator on closed surfaces”, Uspekhi Mat. Nauk, 77:1(463) (2022), 91–108 ; Russian Math. Surveys, 77:1 (2022), 81–97 |
1
|
4. |
D. A. Popov, D. V. Sushko, “Numerical investigation of the properties of remainder in Gauss's circle problem”, Zh. Vychisl. Mat. Mat. Fiz., 62:12 (2022), 2002–2017 ; Comput. Math. Math. Phys., 62:12 (2022), 2008–2022 |
1
|
|
2020 |
5. |
D. A. Popov, “Distribution of prime numbers and the discrete spectrum of the Laplace operator”, Izv. RAN. Ser. Mat., 84:5 (2020), 151–168 ; Izv. Math., 84:5 (2020), 960–977 |
|
2019 |
6. |
D. A. Popov, “On relationships between the discrete and resonance spectra for the Laplace operator on a non-compact hyperbolic Riemann surface”, Funktsional. Anal. i Prilozhen., 53:3 (2019), 61–78 |
1
|
7. |
D. A. Popov, “The discrete spectrum of the Laplace operator on the fundamental domain of the modular group and the Chebyshev psi-function”, Izv. RAN. Ser. Mat., 83:5 (2019), 167–180 ; Izv. Math., 83:5 (2019), 1066–1079 |
2
|
8. |
D. A. Popov, “Circle problem and the spectrum of the Laplace operator on closed 2-manifolds”, Uspekhi Mat. Nauk, 74:5(449) (2019), 145–162 ; Russian Math. Surveys, 74:5 (2019), 909–925 |
4
|
|
2016 |
9. |
D. A. Popov, “Bounds and behaviour of the quantities $P(x)$, $\Delta(x)$ on short intervals”, Izv. RAN. Ser. Mat., 80:6 (2016), 230–246 ; Izv. Math., 80:6 (2016), 1213–1230 |
3
|
|
2014 |
10. |
D. A. Popov, “On the Weyl Formula for the Laplace Operator on Hyperbolic Riemann Surfaces”, Funktsional. Anal. i Prilozhen., 48:2 (2014), 93–96 ; Funct. Anal. Appl., 48:2 (2014), 150–153 |
1
|
|
2013 |
11. |
D. A. Popov, “On the Selberg Trace Formula for Strictly Hyperbolic Groups”, Funktsional. Anal. i Prilozhen., 47:4 (2013), 53–66 ; Funct. Anal. Appl., 47:4 (2013), 290–301 |
4
|
|
2012 |
12. |
D. A. Popov, “Explicit Formula for the Spectral Counting Function of the Laplace Operator on a Compact Riemannian Surface of Genus $g>1$”, Funktsional. Anal. i Prilozhen., 46:2 (2012), 66–82 ; Funct. Anal. Appl., 46:2 (2012), 133–146 |
3
|
|
2011 |
13. |
D. A. Popov, “On the second term in the Weyl formula for the spectrum of the Laplace operator on the two-dimensional torus and the number of integer points in spectral domains”, Izv. RAN. Ser. Mat., 75:5 (2011), 139–176 ; Izv. Math., 75:5 (2011), 1007–1045 |
2
|
|
2009 |
14. |
D. A. Popov, “Asymptotic behaviour of the positive spectrum of a family of periodic Sturm–Liouville problems
under continuous passage from a definite problem to an indefinite one”, Izv. RAN. Ser. Mat., 73:3 (2009), 151–182 ; Izv. Math., 73:3 (2009), 579–610 |
1
|
|
2008 |
15. |
D. A. Popov, “Remarks on uniform combined estimates of oscillatory integrals
with simple singularities”, Izv. RAN. Ser. Mat., 72:4 (2008), 173–196 ; Izv. Math., 72:4 (2008), 793–816 |
4
|
|
2004 |
16. |
D. A. Popov, D. V. Sushko, “Image Restoration in Optical Acoustic Tomography”, Probl. Peredachi Inf., 40:3 (2004), 81–107 ; Problems Inform. Transmission, 40:3 (2004), 254–278 |
17
|
|
2003 |
17. |
D. A. Popov, “The Paley–Wiener Theorem for the Generalized Radon Transform on the Plane”, Funktsional. Anal. i Prilozhen., 37:3 (2003), 65–72 ; Funct. Anal. Appl., 37:3 (2003), 215–220 |
1
|
|
2001 |
18. |
D. A. Popov, “The Generalized Radon Transform on the Plane, the Inverse Transform, and the Cavalieri Conditions”, Funktsional. Anal. i Prilozhen., 35:4 (2001), 38–53 ; Funct. Anal. Appl., 35:4 (2001), 270–283 |
10
|
|
2000 |
19. |
D. A. Popov, “On the number of lattice points in three-dimensional solids of revolution”, Izv. RAN. Ser. Mat., 64:2 (2000), 121–140 ; Izv. Math., 64:2 (2000), 343–361 |
6
|
|
1998 |
20. |
D. A. Popov, “Reconstruction of characteristic functions in two-dimensional Radon tomography”, Uspekhi Mat. Nauk, 53:1(319) (1998), 115–198 ; Russian Math. Surveys, 53:1 (1998), 109–193 |
9
|
21. |
D. A. Popov, “Spherical convergence of the Fourier integral of the indicator function of an $N$-dimensional domain”, Mat. Sb., 189:7 (1998), 145–157 ; Sb. Math., 189:7 (1998), 1101–1113 |
4
|
|
1997 |
22. |
D. A. Popov, “Estimates with constants for some classes of oscillatory integrals”, Uspekhi Mat. Nauk, 52:1(313) (1997), 77–148 ; Russian Math. Surveys, 52:1 (1997), 73–145 |
17
|
23. |
D. A. Popov, “Spherical convergence of the Fourier series and integral of the indicator of a two-dimensional domain”, Trudy Mat. Inst. Steklova, 218 (1997), 354–373 ; Proc. Steklov Inst. Math., 218 (1997), 352–371 |
6
|
|
1990 |
24. |
D. A. Popov, D. V. Sushko, “Convergence of algorithms for the numerical solution of a
convolution equation”, Dokl. Akad. Nauk SSSR, 315:2 (1990), 309–313 ; Dokl. Math., 42:3 (1991), 784–788 |
2
|
|
1984 |
25. |
D. A. Popov, “Application of smooth regularizers for convolution computation”, Dokl. Akad. Nauk SSSR, 276:1 (1984), 38–42 |
2
|
|
1975 |
26. |
D. A. Popov, L. I. Daikhin, “Einstein spaces and Yang–Mills fields”, Dokl. Akad. Nauk SSSR, 225:4 (1975), 790–793 |
27. |
D. A. Popov, “Theory of Yang–Mills fields”, TMF, 24:3 (1975), 347–356 ; Theoret. and Math. Phys., 24:3 (1975), 879–885 |
17
|
|
Presentations in Math-Net.Ru |
1. |
Numerical investigation of the basic properties of the residual term in the circle problem D. A. Popov, D. V. Sushko
Seminar on Complex Analysis (Gonchar Seminar) December 6, 2021 17:00
|
2. |
Распределение простых чисел и спектр оператора Лапласа D. A. Popov
Contemporary Problems in Number Theory February 20, 2020 12:45
|
3. |
Дискретный спектр оператора Лапласа и пси-функция Чебышёва D. A. Popov
Contemporary Problems in Number Theory February 22, 2018 12:45
|
4. |
On the function $P(x)$ D. A. Popov
А.A.Karatsuba's 80th Birthday Conference in Number Theory and Applications May 25, 2017 15:15
|
5. |
On the spectrum of the Laplace operator on the two-dimensional surfaces D. A. Popov
Seminar on Complex Analysis (Gonchar Seminar) May 16, 2016 17:00
|
6. |
On a discrete spectrum of Laplace operator on the fundamental domain of modular group and Chebyshev's function D. A. Popov
Conference to the Memory of Anatoly Alekseevitch Karatsuba on Number theory and Applications January 29, 2016 15:00
|
7. |
Формула Сельберга для кофинитных групп и гипотеза Рельке D. A. Popov
Seminar of the Department of Geometry and Topology "Geometry, Topology and Mathematical Physics", Steklov Mathematical Institute of RAS (Novikov Seminar) July 1, 2015 14:00
|
8. |
On the behavior of the function $P(x)$ on short intervals D. A. Popov
Conference in memory of A. A. Karatsuba on number theory and applications, 2015 January 30, 2015 13:00
|
9. |
On Weyl formula for the Laplace operator over the compact surfaces D. A. Popov
Conference in memory of A. A. Karatsuba on number theory and applications January 31, 2014 13:00
|
10. |
О спектре оператора Лапласа на римановых поверхностях D. A. Popov
I. M. Gelfand and Modern Mathematics December 18, 2013 11:50
|
11. |
On the spectrum of the Laplace operator on Riemann surfaces D. A. Popov
Seminar on Complex Analysis (Gonchar Seminar) December 9, 2013 18:00
|
12. |
Локальные моменты в проблемах делителей и круга D. A. Popov
Contemporary Problems in Number Theory October 10, 2013 12:45
|
13. |
О формуле Вейля для оператора Лапласа на компактных замкнутых римановых многообразиях D. A. Popov
Contemporary Problems in Number Theory April 18, 2013 12:45
|
14. |
О втором члене в формуле Вейля для оператора Лапласа на замкнутом двумерном римановом многообразии D. A. Popov
Seminar of the Department of Geometry and Topology "Geometry, Topology and Mathematical Physics", Steklov Mathematical Institute of RAS (Novikov Seminar) April 17, 2013 18:30
|
15. |
On the Weyl formula for the Laplace operator on a closed two-dimensional Riemannian manifold D. A. Popov
Seminar on Arithmetic Algebraic Geometry May 23, 2012 12:00
|
16. |
О формуле Вейля для оператора Лапласа на римановых поверхностях D. A. Popov
Seminar of the Department of Mathematical Physics, Steklov Mathematical Institute of RAS May 3, 2012 11:00
|
17. |
О втором члене в формуле Вейля на компактных римановых поверхностях D. A. Popov
Seminar of the Department of Theoretical Physics, Steklov Mathematical Institute of RAS April 11, 2012 14:00
|
18. |
О формуле Вейля для оператора Лапласа на компактных римановых поверхностях D. A. Popov
Seminar on Theory of Functions of Several Real Variables and Its Applications to Problems of Mathematical Physics November 30, 2011 16:00
|
19. |
On Weyl formula for spectrum of the Laplace operator on compact Riemann surfaces D. A. Popov
Complex analysis and mathematical physics April 25, 2011 16:00
|
20. |
Eplicit formulas for functions on a spectrum of Laplace operator on hyperbolic Riemann surfaces D. A. Popov
Riemann surfaces, Lie algebras and mathematical physics March 18, 2011 17:00
|
|
|
Organisations |
|
|
|
|