Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Popov, Dmitrii Aleksandrovich

Statistics Math-Net.Ru
Total publications: 27
Scientific articles: 27
Presentations: 20

Number of views:
This page:3340
Abstract pages:11620
Full texts:4191
References:1339
Senior Researcher
Doctor of physico-mathematical sciences (1999)

https://www.mathnet.ru/eng/person8589
List of publications on Google Scholar
List of publications on ZentralBlatt
https://mathscinet.ams.org/mathscinet/MRAuthorID/204356

Publications in Math-Net.Ru Citations
2024
1. D. A. Popov, “Voronoi's formulae and the Gauss problem”, Uspekhi Mat. Nauk, 79:1(475) (2024),  59–134  mathnet  mathscinet; Russian Math. Surveys, 79:1 (2024), 53–126  isi
2022
2. M. A. Korolev, D. A. Popov, “On Jutila's integral in the circle problem”, Izv. RAN. Ser. Mat., 86:3 (2022),  3–46  mathnet  mathscinet; Izv. Math., 86:3 (2022), 413–455  isi  scopus 2
3. D. A. Popov, “Spectrum of the Laplace operator on closed surfaces”, Uspekhi Mat. Nauk, 77:1(463) (2022),  91–108  mathnet  mathscinet  zmath; Russian Math. Surveys, 77:1 (2022), 81–97  isi  scopus 1
4. D. A. Popov, D. V. Sushko, “Numerical investigation of the properties of remainder in Gauss's circle problem”, Zh. Vychisl. Mat. Mat. Fiz., 62:12 (2022),  2002–2017  mathnet  elib; Comput. Math. Math. Phys., 62:12 (2022), 2008–2022 1
2020
5. D. A. Popov, “Distribution of prime numbers and the discrete spectrum of the Laplace operator”, Izv. RAN. Ser. Mat., 84:5 (2020),  151–168  mathnet  elib; Izv. Math., 84:5 (2020), 960–977  isi  scopus
2019
6. D. A. Popov, “On relationships between the discrete and resonance spectra for the Laplace operator on a non-compact hyperbolic Riemann surface”, Funktsional. Anal. i Prilozhen., 53:3 (2019),  61–78  mathnet  mathscinet  elib 1
7. D. A. Popov, “The discrete spectrum of the Laplace operator on the fundamental domain of the modular group and the Chebyshev psi-function”, Izv. RAN. Ser. Mat., 83:5 (2019),  167–180  mathnet  mathscinet  elib; Izv. Math., 83:5 (2019), 1066–1079  isi  scopus 2
8. D. A. Popov, “Circle problem and the spectrum of the Laplace operator on closed 2-manifolds”, Uspekhi Mat. Nauk, 74:5(449) (2019),  145–162  mathnet  mathscinet  zmath; Russian Math. Surveys, 74:5 (2019), 909–925  isi  scopus 4
2016
9. D. A. Popov, “Bounds and behaviour of the quantities $P(x)$, $\Delta(x)$ on short intervals”, Izv. RAN. Ser. Mat., 80:6 (2016),  230–246  mathnet  mathscinet  elib; Izv. Math., 80:6 (2016), 1213–1230  isi  scopus 3
2014
10. D. A. Popov, “On the Weyl Formula for the Laplace Operator on Hyperbolic Riemann Surfaces”, Funktsional. Anal. i Prilozhen., 48:2 (2014),  93–96  mathnet  mathscinet  zmath  elib; Funct. Anal. Appl., 48:2 (2014), 150–153  isi  elib  scopus 1
2013
11. D. A. Popov, “On the Selberg Trace Formula for Strictly Hyperbolic Groups”, Funktsional. Anal. i Prilozhen., 47:4 (2013),  53–66  mathnet  mathscinet  zmath  elib; Funct. Anal. Appl., 47:4 (2013), 290–301  isi  scopus 4
2012
12. D. A. Popov, “Explicit Formula for the Spectral Counting Function of the Laplace Operator on a Compact Riemannian Surface of Genus $g>1$”, Funktsional. Anal. i Prilozhen., 46:2 (2012),  66–82  mathnet  mathscinet  zmath  elib; Funct. Anal. Appl., 46:2 (2012), 133–146  isi  elib  scopus 3
2011
13. D. A. Popov, “On the second term in the Weyl formula for the spectrum of the Laplace operator on the two-dimensional torus and the number of integer points in spectral domains”, Izv. RAN. Ser. Mat., 75:5 (2011),  139–176  mathnet  mathscinet  zmath  elib; Izv. Math., 75:5 (2011), 1007–1045  isi  elib  scopus 2
2009
14. D. A. Popov, “Asymptotic behaviour of the positive spectrum of a family of periodic Sturm–Liouville problems under continuous passage from a definite problem to an indefinite one”, Izv. RAN. Ser. Mat., 73:3 (2009),  151–182  mathnet  mathscinet  zmath  elib; Izv. Math., 73:3 (2009), 579–610  isi  elib  scopus 1
2008
15. D. A. Popov, “Remarks on uniform combined estimates of oscillatory integrals with simple singularities”, Izv. RAN. Ser. Mat., 72:4 (2008),  173–196  mathnet  mathscinet  zmath  elib; Izv. Math., 72:4 (2008), 793–816  isi  elib  scopus 4
2004
16. D. A. Popov, D. V. Sushko, “Image Restoration in Optical Acoustic Tomography”, Probl. Peredachi Inf., 40:3 (2004),  81–107  mathnet  mathscinet  zmath; Problems Inform. Transmission, 40:3 (2004), 254–278 17
2003
17. D. A. Popov, “The Paley–Wiener Theorem for the Generalized Radon Transform on the Plane”, Funktsional. Anal. i Prilozhen., 37:3 (2003),  65–72  mathnet  mathscinet  zmath; Funct. Anal. Appl., 37:3 (2003), 215–220  isi  scopus 1
2001
18. D. A. Popov, “The Generalized Radon Transform on the Plane, the Inverse Transform, and the Cavalieri Conditions”, Funktsional. Anal. i Prilozhen., 35:4 (2001),  38–53  mathnet  mathscinet  zmath  elib; Funct. Anal. Appl., 35:4 (2001), 270–283  isi  scopus 10
2000
19. D. A. Popov, “On the number of lattice points in three-dimensional solids of revolution”, Izv. RAN. Ser. Mat., 64:2 (2000),  121–140  mathnet  mathscinet  zmath; Izv. Math., 64:2 (2000), 343–361  isi  scopus 6
1998
20. D. A. Popov, “Reconstruction of characteristic functions in two-dimensional Radon tomography”, Uspekhi Mat. Nauk, 53:1(319) (1998),  115–198  mathnet  mathscinet  zmath; Russian Math. Surveys, 53:1 (1998), 109–193  isi  scopus 9
21. D. A. Popov, “Spherical convergence of the Fourier integral of the indicator function of an $N$-dimensional domain”, Mat. Sb., 189:7 (1998),  145–157  mathnet  mathscinet  zmath; Sb. Math., 189:7 (1998), 1101–1113  isi  scopus 4
1997
22. D. A. Popov, “Estimates with constants for some classes of oscillatory integrals”, Uspekhi Mat. Nauk, 52:1(313) (1997),  77–148  mathnet  mathscinet  zmath; Russian Math. Surveys, 52:1 (1997), 73–145  isi  scopus 17
23. D. A. Popov, “Spherical convergence of the Fourier series and integral of the indicator of a two-dimensional domain”, Trudy Mat. Inst. Steklova, 218 (1997),  354–373  mathnet  mathscinet  zmath; Proc. Steklov Inst. Math., 218 (1997), 352–371 6
1990
24. D. A. Popov, D. V. Sushko, “Convergence of algorithms for the numerical solution of a convolution equation”, Dokl. Akad. Nauk SSSR, 315:2 (1990),  309–313  mathnet  mathscinet  zmath; Dokl. Math., 42:3 (1991), 784–788 2
1984
25. D. A. Popov, “Application of smooth regularizers for convolution computation”, Dokl. Akad. Nauk SSSR, 276:1 (1984),  38–42  mathnet  mathscinet  zmath 2
1975
26. D. A. Popov, L. I. Daikhin, “Einstein spaces and Yang–Mills fields”, Dokl. Akad. Nauk SSSR, 225:4 (1975),  790–793  mathnet  mathscinet  zmath
27. D. A. Popov, “Theory of Yang–Mills fields”, TMF, 24:3 (1975),  347–356  mathnet  mathscinet  zmath; Theoret. and Math. Phys., 24:3 (1975), 879–885 17

Presentations in Math-Net.Ru
1. Numerical investigation of the basic properties of the residual term in the circle problem
D. A. Popov, D. V. Sushko
Seminar on Complex Analysis (Gonchar Seminar)
December 6, 2021 17:00
2. Распределение простых чисел и спектр оператора Лапласа
D. A. Popov
Contemporary Problems in Number Theory
February 20, 2020 12:45
3. Дискретный спектр оператора Лапласа и пси-функция Чебышёва
D. A. Popov
Contemporary Problems in Number Theory
February 22, 2018 12:45
4. On the function $P(x)$
D. A. Popov
А.A.Karatsuba's 80th Birthday Conference in Number Theory and Applications
May 25, 2017 15:15   
5. On the spectrum of the Laplace operator on the two-dimensional surfaces
D. A. Popov
Seminar on Complex Analysis (Gonchar Seminar)
May 16, 2016 17:00
6. On a discrete spectrum of Laplace operator on the fundamental domain of modular group and Chebyshev's function
D. A. Popov
Conference to the Memory of Anatoly Alekseevitch Karatsuba on Number theory and Applications
January 29, 2016 15:00   
7. Формула Сельберга для кофинитных групп и гипотеза Рельке
D. A. Popov
Seminar of the Department of Geometry and Topology "Geometry, Topology and Mathematical Physics", Steklov Mathematical Institute of RAS (Novikov Seminar)
July 1, 2015 14:00
8. On the behavior of the function $P(x)$ on short intervals
D. A. Popov
Conference in memory of A. A. Karatsuba on number theory and applications, 2015
January 30, 2015 13:00   
9. On Weyl formula for the Laplace operator over the compact surfaces
D. A. Popov
Conference in memory of A. A. Karatsuba on number theory and applications
January 31, 2014 13:00   
10. О спектре оператора Лапласа на римановых поверхностях
D. A. Popov
I. M. Gelfand and Modern Mathematics
December 18, 2013 11:50   
11. On the spectrum of the Laplace operator on Riemann surfaces
D. A. Popov
Seminar on Complex Analysis (Gonchar Seminar)
December 9, 2013 18:00
12. Локальные моменты в проблемах делителей и круга
D. A. Popov
Contemporary Problems in Number Theory
October 10, 2013 12:45
13. О формуле Вейля для оператора Лапласа на компактных замкнутых римановых многообразиях
D. A. Popov
Contemporary Problems in Number Theory
April 18, 2013 12:45
14. О втором члене в формуле Вейля для оператора Лапласа на замкнутом двумерном римановом многообразии
D. A. Popov
Seminar of the Department of Geometry and Topology "Geometry, Topology and Mathematical Physics", Steklov Mathematical Institute of RAS (Novikov Seminar)
April 17, 2013 18:30
15. On the Weyl formula for the Laplace operator on a closed two-dimensional Riemannian manifold
D. A. Popov
Seminar on Arithmetic Algebraic Geometry
May 23, 2012 12:00
16. О формуле Вейля для оператора Лапласа на римановых поверхностях
D. A. Popov
Seminar of the Department of Mathematical Physics, Steklov Mathematical Institute of RAS
May 3, 2012 11:00
17. О втором члене в формуле Вейля на компактных римановых поверхностях
D. A. Popov
Seminar of the Department of Theoretical Physics, Steklov Mathematical Institute of RAS
April 11, 2012 14:00
18. О формуле Вейля для оператора Лапласа на компактных римановых поверхностях
D. A. Popov
Seminar on Theory of Functions of Several Real Variables and Its Applications to Problems of Mathematical Physics
November 30, 2011 16:00
19. On Weyl formula for spectrum of the Laplace operator on compact Riemann surfaces
D. A. Popov
Complex analysis and mathematical physics
April 25, 2011 16:00
20. Eplicit formulas for functions on a spectrum of Laplace operator on hyperbolic Riemann surfaces
D. A. Popov
Riemann surfaces, Lie algebras and mathematical physics
March 18, 2011 17:00

Organisations
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024