| List of publications: |
|
|
Citations (Crossref Cited-By Service + Math-Net.Ru) |
|
|
Articles
|
|
| |
| 1. |
D. S. Telyakovskii, “On exceptional sets in the Newton–Leibniz formula”, Trudy Inst. Mat. i Mekh. UrO RAN, 31, no. 3, 2025, 250–263 |
| 2. |
A. I. Rubinshtein, D. S. Telyakovskii, “One example of a continuous nowhere differentiable function whose modulus of continuity does not exceed a given one”, Trudy Inst. Mat. i Mekh. UrO RAN, 30, no. 4, 2024, 224–233 |
| 3. |
A. I. Rubinstein, D. S. Telyakovskii, “On functions of van der Waerden type”, Izv. Saratov Univ. Math. Mech. Inform., 23:3 (2023), 339–347 |
| 4. |
V. I. Berdyshev, O. V. Besov, B. S. Kashin, S. V. Konyagin, Yu. V. Malykhin, K. I. Oskolkov, A. S. Telyakovskii, D. S. Telyakovskii, V. N. Temlyakov, N. N. Kholshchevnikova, “Sergei Aleksandrovich Telyakovskii”, Proc. Steklov Inst. Math. (Suppl.), 319, suppl. 1 (2022), S7–S11 |
| 5. |
V. V. Arestov, V. I. Berdyshev, M. V. Deikalova, S. V. Konyagin, D. S. Telyakovskii, “On the International Workshop-Conference on Function Theory Dedicated to the Centenary of the Birth of S.B. Stechkin”, Trudy Inst. Mat. i Mekh. UrO RAN, 26, no. 4, 2020, 290–299 |
| 6. |
D. S. Telyakovskii, S. A. Telyakovskii, “Geometric approach to finding the conditional extrema”, Trudy Inst. Mat. i Mekh. UrO RAN, 26, no. 4, 2020, 244–254 |
| 7. |
D. S. Telyakovskii, “A sufficient condition for the harmonicity of a function of two variables satisfying the Laplace difference equation”, Trudy Inst. Mat. i Mekh. UrO RAN, 22, no. 4, 2016, 269–283 |
| 8. |
A. I. Rubinstein, D. S. Telyakovskii, “Remarks on Fagnano Problem”, Izv. Saratov Univ. (N.S.), Ser. Math. Mech. Inform., 14:4(1) (2014), 382–387 |
| 9. |
D. S. Telyakovskii, “A Sufficient Condition for the Harmonicity of Functions of Two Variables”, Math. Notes, 86:4 (2009), 591–601 |
| 10. |
D. S. Telyakovskii, “A Generalization of Men'shov's Theorem on Functions Satisfying Condition $K''$”, Math. Notes, 76:4 (2004), 534–545 |
| 11. |
D. S. Telyakovskii, “On the Phragmen–Lindelof principle for subharmonic functions”, Izv. Math., 63:2 (1999), 401–422 |
| 12. |
D. S. Telyakovskii, “A weakened asymptotic monogeny condition”, Math. Notes, 60:6 (1996), 681–687 |
| 13. |
D. S. Telyakovskii, “On the holomorphy of functions setting angle-preserving transformations”, Math. Notes, 56:5 (1994), 1200–1204 |
| 14. |
D. S. Telyakovskii, “On asymptotically monogenic functions”, Proc. Steklov Inst. Math., 198 (1994), 177–182 |
| 15. |
D. S. Telyakovskii, “Generalization of a theorem of D. E. Men'shov on asymptotically monogenic functions”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1992, no. 4, 68–71 |
| 16. |
D. S. Telyakovskii, “Generalization of a theorem of Men'shov on monogenic functions”, Math. USSR-Izv., 35:1 (1990), 221–231 |
| 17. |
D. S. Telyakovskii, “Generalization of the Looman–Men'shov theorem”, Math. Notes, 39:4 (1986), 296–301 |
| 18. |
D. S. Telyakovskii, “On asymptotically monogenic bounded functions”, Math. USSR-Sb., 57:2 (1987), 449–454 |
| 19. |
D. S. Telyakovskii, “On asymptotically harmonic functions.”, Analysis Mathematica, 36 (2010), 225–249 |
| 20. |
D. S. Telyakovskii, “On functions that satisfy a weakened asymptotic monogeny condition.”, Analysis Mathematica, 25 (1999), 221–242
|
1
[x]
|
|