Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Mokhov, Oleg Ivanovich

Statistics Math-Net.Ru
Total publications: 62
Scientific articles: 61
Presentations: 19

Number of views:
This page:10707
Abstract pages:33320
Full texts:12630
References:3580
Senior Researcher
Doctor of physico-mathematical sciences (1996)
Speciality: 01.01.04 (Geometry and topology)
Birth date: 28.06.1959
E-mail: ,
Keywords: differential geometry, mathematical physics, integrable systems, Poisson geometry, symplectic geometry, algebraic geometry, Riemannian geometry, nonlinear equations, systems of hydrodynamic type, discrete geometry, discrete equations, Hamiltonian and bi-Hamiltonian systems, commuting differential operators.
UDC: 512.7, 514.7, 517.9, 517.91, 512.643.2, 511.9, 514.74, 514.174.6, 517.957, 514.8, 517.958, 517.95, 512.55
MSC: 37J05, 53D05

Subject:

Symplectic geometry, Poisson geometry, algebraic geometry, differential geometry and Riemannian geometry, nonlinear equations of mathematical physics, integrable systems, Hamiltonian and bi-Hamiltonian systems, discrete geometry and discrete equations, systems of hydrodynamic type, commuting differential operators.

   
Main publications:
  1. O. I. Mokhov, Symplectic and Poisson geometry on loop spaces of smooth manifolds and integrable equations, Reviews in Mathematics and Mathematical Physics, 11, part 2, eds. S. P. Novikov and I. M. Krichever, Harwood Academic Publishers, Amsterdam, 2001, 204  mathscinet  zmath
  2. O. I. Mokhov, “Soglasovannye i pochti soglasovannye psevdorimanovy metriki”, Funktsionalnyi analiz i ego prilozheniya, 35:2 (2001), 24–36  mathnet  mathscinet  zmath
  3. O. I. Mokhov, “Simplekticheskie i puassonovy struktury na prostranstvakh petel gladkikh mnogoobrazii i integriruemye sistemy”, Uspekhi matematicheskikh nauk, 53:3 (1998), 85–192  mathnet  mathscinet  zmath
  4. O. I. Mokhov, “O gruppakh kogomologii kompleksov odnorodnykh form na prostranstvakh petel gladkikh mnogoobrazii”, Funktsionalnyi analiz i ego prilozheniya, 32:3 (1998), 22–34  mathnet  mathscinet  zmath
  5. O. I. Mokhov, “Kommutiruyuschie differentsialnye operatory ranga 3 i nelineinye uravneniya”, Izvestiya AN SSSR, seriya matematicheskaya, 53:6 (1989), 1291–1315  mathnet  mathscinet  zmath

https://www.mathnet.ru/eng/person8947
https://scholar.google.com/citations?user=b3C7Zo0AAAAJ&hl=en
https://zbmath.org/authors/?q=ai:mokhov.oleg-i
https://mathscinet.ams.org/mathscinet/MRAuthorID/211830
https://elibrary.ru/author_items.asp?spin=3128-4327
ISTINA https://istina.msu.ru/workers/843956
https://orcid.org/0000-0002-9367-8405
https://www.webofscience.com/wos/author/record/B-6678-2013
https://www.scopus.com/authid/detail.url?authorId=7004444589
https://www.researchgate.net/profile/Oleg_Mokhov
https://arxiv.org/a/mokhov_o_1

Publications in Math-Net.Ru Citations
2023
1. E. V. Glukhov, O. I. Mokhov, “Algebraic-geometry approach to construction of semi-Hamiltonian systems of hydrodynamic type”, Izv. RAN. Ser. Mat., 87:6 (2023),  35–48  mathnet  mathscinet; Izv. Math., 87:6 (2023), 1148–1160  isi  scopus
2021
2. A. M. Gagonov, O. I. Mokhov, “On compatible diagonal metrics”, Uspekhi Mat. Nauk, 76:6(462) (2021),  195–196  mathnet  mathscinet  zmath; Russian Math. Surveys, 76:6 (2021), 1140–1142  isi  scopus
2020
3. E. V. Glukhov, O. I. Mokhov, “On algebraic-geometry methods for constructing submanifolds with flat normal bundle and holonomic net of curvature lines”, Funktsional. Anal. i Prilozhen., 54:3 (2020),  26–37  mathnet  mathscinet; Funct. Anal. Appl., 54:3 (2020), 169–178  isi 2
2019
4. E. V. Glukhov, O. I. Mokhov, “On algebraic-geometry methods for constructing flat diagonal metrics of a special form”, Uspekhi Mat. Nauk, 74:4(448) (2019),  185–186  mathnet  mathscinet  zmath  elib; Russian Math. Surveys, 74:4 (2019), 761–763  isi  scopus 2
5. O. I. Mokhov, N. A. Strizhova, “Liouville integrability of the reduction of the associativity equations on the set of stationary points of an integral in the case of three primary fields”, Uspekhi Mat. Nauk, 74:2(446) (2019),  191–192  mathnet  mathscinet  zmath  elib; Russian Math. Surveys, 74:2 (2019), 369–371  isi  scopus
2018
6. O. I. Mokhov, N. A. Strizhova, “Classification of the associativity equations possessing a Hamiltonian structure of Dubrovin–Novikov type”, Uspekhi Mat. Nauk, 73:1(439) (2018),  183–184  mathnet  mathscinet  zmath  elib; Russian Math. Surveys, 73:1 (2018), 175–177  isi  scopus 1
7. O. I. Mokhov, N. A. Pavlenko, “Classification of the associativity equations with a first-order Hamiltonian operator”, TMF, 197:1 (2018),  124–137  mathnet  mathscinet  elib; Theoret. and Math. Phys., 197:1 (2018), 1501–1513  isi  scopus 3
2017
8. O. I. Mokhov, “Pencils of compatible metrics and integrable systems”, Uspekhi Mat. Nauk, 72:5(437) (2017),  113–164  mathnet  mathscinet  zmath  elib; Russian Math. Surveys, 72:5 (2017), 889–937  isi  scopus 10
2016
9. O. I. Mokhov, “On metrics of diagonal curvature”, Fundam. Prikl. Mat., 21:6 (2016),  171–182  mathnet; J. Math. Sci., 248:6 (2020), 780–787 2
2013
10. O. I. Mokhov, “On Commutative Subalgebras of the Weyl Algebra Related to Commuting Operators of Arbitrary Rank and Genus”, Mat. Zametki, 94:2 (2013),  314–316  mathnet  mathscinet  zmath  elib; Math. Notes, 94:2 (2013), 298–300  isi  elib  scopus 19
2011
11. O. I. Mokhov, “Deformations of Poisson Structures by Closed $3$-Forms”, Mat. Zametki, 89:6 (2011),  944–947  mathnet  mathscinet; Math. Notes, 89:6 (2011), 899–902  isi  scopus
12. Oleg I. Mokhov, “On Initial Data in the Problem of Consistency on Cubic Lattices for $3\times3$ Determinants”, SIGMA, 7 (2011), 075, 19 pp.  mathnet  mathscinet  isi  scopus
13. O. I. Mokhov, “Compatible metrics and the diagonalizability of nonlocally bi-Hamiltonian systems of hydrodynamic type”, TMF, 167:1 (2011),  3–22  mathnet  mathscinet; Theoret. and Math. Phys., 167:1 (2011), 403–420  isi  scopus 3
2010
14. O. I. Mokhov, “Riemann invariants of semisimple non-locally bi-Hamiltonian systems of hydrodynamic type and compatible metrics”, Uspekhi Mat. Nauk, 65:6(396) (2010),  189–190  mathnet  mathscinet  zmath  elib; Russian Math. Surveys, 65:6 (2010), 1183–1185  isi  elib  scopus 5
2009
15. O. I. Mokhov, “Realization of Frobenius Manifolds as Submanifolds in Pseudo-Euclidean Spaces”, Trudy Mat. Inst. Steklova, 267 (2009),  226–244  mathnet  mathscinet  zmath  elib; Proc. Steklov Inst. Math., 267 (2009), 217–234  isi  scopus 2
16. O. I. Mokhov, “Consistency on Cubic Lattices for Determinants of Arbitrary Orders”, Trudy Mat. Inst. Steklova, 266 (2009),  202–217  mathnet  mathscinet  zmath  elib; Proc. Steklov Inst. Math., 266 (2009), 195–209  isi  elib  scopus 2
2008
17. O. I. Mokhov, “The Classification of Nonsingular Multidimensional Dubrovin–Novikov Brackets”, Funktsional. Anal. i Prilozhen., 42:1 (2008),  39–52  mathnet  mathscinet  zmath  elib; Funct. Anal. Appl., 42:1 (2008), 33–44  isi  elib  scopus 20
18. O. I. Mokhov, “On consistency of determinants on cubic lattices”, Uspekhi Mat. Nauk, 63:6(384) (2008),  169–170  mathnet  mathscinet  zmath  elib; Russian Math. Surveys, 63:6 (2008), 1146–1148  isi  elib  scopus 2
19. O. I. Mokhov, “Duality in a special class of submanifolds and Frobenius manifolds”, Uspekhi Mat. Nauk, 63:2(380) (2008),  177–178  mathnet  mathscinet  zmath  elib; Russian Math. Surveys, 63:2 (2008), 378–380  isi  scopus 1
2007
20. O. I. Mokhov, “Theory of submanifolds, associativity equations in 2D topological quantum field theories, and Frobenius manifolds”, TMF, 152:2 (2007),  368–376  mathnet  mathscinet  zmath  elib; Theoret. and Math. Phys., 152:2 (2007), 1183–1190  isi  scopus 8
2006
21. O. I. Mokhov, “Nonlocal Hamiltonian Operators of Hydrodynamic Type with Flat Metrics, Integrable Hierarchies, and the Associativity Equations”, Funktsional. Anal. i Prilozhen., 40:1 (2006),  14–29  mathnet  mathscinet  zmath  elib; Funct. Anal. Appl., 40:1 (2006), 11–23  isi  elib  scopus 14
22. O. I. Mokhov, “Systems of integrals in involution and associativity equations”, Uspekhi Mat. Nauk, 61:3(369) (2006),  175–176  mathnet  mathscinet  zmath  elib; Russian Math. Surveys, 61:3 (2006), 568–570  isi  elib  scopus 2
23. O. I. Mokhov, “The classification of multidimensional Poisson brackets of hydrodynamic type”, Uspekhi Mat. Nauk, 61:2(368) (2006),  167–168  mathnet  mathscinet  zmath  elib; Russian Math. Surveys, 61:2 (2006), 356–358  isi  elib  scopus 3
2004
24. O. I. Mokhov, “Non-local Hamiltonian operators of hydrodynamic type with flat metrics, and the associativity equations”, Uspekhi Mat. Nauk, 59:1(355) (2004),  187–188  mathnet  mathscinet  zmath; Russian Math. Surveys, 59:1 (2004), 191–192  isi  scopus 3
25. O. I. Mokhov, “Lax Pairs for Equations Describing Compatible Nonlocal Poisson Brackets of Hydrodynamic Type and Integrable Reductions of the Lamй Equations”, TMF, 138:2 (2004),  283–296  mathnet  mathscinet  zmath; Theoret. and Math. Phys., 138:2 (2004), 238–249  isi 8
2003
26. O. I. Mokhov, “The Liouville Canonical Form for Compatible Nonlocal Poisson Brackets of Hydrodynamic Type and Integrable Hierarchies”, Funktsional. Anal. i Prilozhen., 37:2 (2003),  28–40  mathnet  mathscinet  zmath  elib; Funct. Anal. Appl., 37:2 (2003), 103–113  isi  scopus 8
27. O. I. Mokhov, “Quasi-Frobenius Algebras and Their Integrable $N$-Parameter Deformations Generated by Compatible $(N\times N)$ Metrics of Constant Riemannian Curvature”, TMF, 136:1 (2003),  20–29  mathnet  mathscinet  zmath  elib; Theoret. and Math. Phys., 136:1 (2003), 908–916  isi 3
2002
28. O. I. Mokhov, “Compatible Metrics of Constant Riemannian Curvature: Local Geometry, Nonlinear Equations, and Integrability”, Funktsional. Anal. i Prilozhen., 36:3 (2002),  36–47  mathnet  mathscinet  zmath  elib; Funct. Anal. Appl., 36:3 (2002), 196–204  isi  scopus 10
29. O. I. Mokhov, “Lax pairs for compatible non-local Hamiltonian operators of hydrodynamic type”, Uspekhi Mat. Nauk, 57:6(348) (2002),  189–190  mathnet  mathscinet  zmath; Russian Math. Surveys, 57:6 (2002), 1234–1235  isi  scopus 4
30. O. I. Mokhov, “Integrable bi-Hamiltonian hierarchies generated by compatible metrics of constant Riemannian curvature”, Uspekhi Mat. Nauk, 57:5(347) (2002),  157–158  mathnet  mathscinet  zmath; Russian Math. Surveys, 57:5 (2002), 999–1001  isi  scopus 3
31. O. I. Mokhov, “The Lax pair for non-singular pencils of metrics of constant Riemannian curvature”, Uspekhi Mat. Nauk, 57:3(345) (2002),  155–156  mathnet  mathscinet  zmath  elib; Russian Math. Surveys, 57:3 (2002), 603–605  isi  scopus 8
32. O. I. Mokhov, “Integrable bi-Hamiltonian systems of hydrodynamic type”, Uspekhi Mat. Nauk, 57:1(343) (2002),  157–158  mathnet  mathscinet  zmath  elib; Russian Math. Surveys, 57:1 (2002), 153–154  isi  scopus 8
33. O. I. Mokhov, “Compatible Dubrovin–Novikov Hamiltonian Operators, Lie Derivative, and Integrable Systems of Hydrodynamic Type”, TMF, 133:2 (2002),  279–288  mathnet  mathscinet  elib; Theoret. and Math. Phys., 133:2 (2002), 1557–1564  isi 9
34. O. I. Mokhov, “Compatible Nonlocal Poisson Brackets of Hydrodynamic Type and Integrable Hierarchies Related to Them”, TMF, 132:1 (2002),  60–73  mathnet  mathscinet  zmath  elib; Theoret. and Math. Phys., 132:1 (2002), 942–954  isi 6
35. O. I. Mokhov, “Integrability of the Equations for Nonsingular Pairs of Compatible Flat Metrics”, TMF, 130:2 (2002),  233–250  mathnet  mathscinet  zmath  elib; Theoret. and Math. Phys., 130:2 (2002), 198–212  isi 10
2001
36. O. I. Mokhov, “Compatible and Almost Compatible Pseudo-Riemannian Metrics”, Funktsional. Anal. i Prilozhen., 35:2 (2001),  24–36  mathnet  mathscinet  zmath  elib; Funct. Anal. Appl., 35:2 (2001), 100–110  isi  scopus 23
37. O. I. Mokhov, “Compatible Dubrovin–Novikov Hamiltonian operators and the Lie derivative”, Uspekhi Mat. Nauk, 56:6(342) (2001),  161–162  mathnet  mathscinet  zmath  elib; Russian Math. Surveys, 56:6 (2001), 1175–1176  isi  scopus 2
38. O. I. Mokhov, “Flat pencils of metrics and integrable reductions of Lamé's equations”, Uspekhi Mat. Nauk, 56:2(338) (2001),  221–222  mathnet  mathscinet  zmath  elib; Russian Math. Surveys, 56:2 (2001), 416–418  isi  scopus 13
2000
39. O. I. Mokhov, “Compatible and almost compatible metrics”, Uspekhi Mat. Nauk, 55:4(334) (2000),  217–218  mathnet  mathscinet  zmath; Russian Math. Surveys, 55:4 (2000), 819–821  isi  scopus 12
1999
40. O. I. Mokhov, “Compatible Poisson Structures of Hydrodynamic Type and Associativity Equations”, Trudy Mat. Inst. Steklova, 225 (1999),  284–300  mathnet  mathscinet  zmath; Proc. Steklov Inst. Math., 225 (1999), 269–284 26
1998
41. O. I. Mokhov, “On the Cohomology Groups of Complexes of Homogeneous Forms on Loop Spaces of Smooth Manifolds”, Funktsional. Anal. i Prilozhen., 32:3 (1998),  22–34  mathnet  mathscinet  zmath  elib; Funct. Anal. Appl., 32:3 (1998), 162–171  isi 1
42. O. I. Mokhov, “Symplectic and Poisson structures on loop spaces of smooth manifolds, and integrable systems”, Uspekhi Mat. Nauk, 53:3(321) (1998),  85–192  mathnet  mathscinet  zmath  elib; Russian Math. Surveys, 53:3 (1998), 515–622  isi  elib  scopus 57
43. O. I. Mokhov, “On compatible potential deformations of Frobenius algebras and associativity equations”, Uspekhi Mat. Nauk, 53:2(320) (1998),  153–154  mathnet  mathscinet  zmath; Russian Math. Surveys, 53:2 (1998), 396–397  isi  scopus 17
1997
44. O. I. Mokhov, “On compatible Poisson structures of hydrodynamic type”, Uspekhi Mat. Nauk, 52:6(318) (1997),  171–172  mathnet  mathscinet; Russian Math. Surveys, 52:6 (1997), 1310–1311  isi  scopus 17
45. O. I. Mokhov, “Differential geometry of symplectic and Poisson structures on loop spaces of smooth manifolds, and integrable systems”, Trudy Mat. Inst. Steklova, 217 (1997),  100–134  mathnet  mathscinet  zmath; Proc. Steklov Inst. Math., 217 (1997), 91–125 6
1996
46. O. I. Mokhov, E. V. Ferapontov, “The Associativity Equations in the Two-Dimensional Topological Field Theory as Integrable Hamiltonian Nondiagonalizable Systems of Hydrodynamic Type”, Funktsional. Anal. i Prilozhen., 30:3 (1996),  62–72  mathnet  mathscinet  zmath; Funct. Anal. Appl., 30:3 (1996), 195–203  isi 35
47. O. I. Mokhov, “Complex homogeneous forms on loop spaces of smooth manifolds and their cohomology groups”, Uspekhi Mat. Nauk, 51:2(308) (1996),  141–142  mathnet  mathscinet  zmath; Russian Math. Surveys, 51:2 (1996), 341–342  isi  scopus 3
1994
48. O. I. Mokhov, E. V. Ferapontov, “Hamiltonian Pairs Associated with Skew-Symmetric Killing Tensors on Spaces of Constant Curvature”, Funktsional. Anal. i Prilozhen., 28:2 (1994),  60–63  mathnet  mathscinet  zmath; Funct. Anal. Appl., 28:2 (1994), 123–125  isi 14
1991
49. O. I. Mokhov, “Homogeneous symplectic structures of second order on loop spaces and symplectic connections”, Funktsional. Anal. i Prilozhen., 25:2 (1991),  65–67  mathnet  mathscinet  zmath; Funct. Anal. Appl., 25:2 (1991), 136–137  isi 4
50. O. I. Mokhov, “Canonical Hamiltonian representation of the Krichever–Novikov equation”, Mat. Zametki, 50:3 (1991),  87–96  mathnet  mathscinet  zmath; Math. Notes, 50:3 (1991), 939–945  isi 6
1990
51. O. I. Mokhov, “Симплектические формы на пространстве петель и риманова геометрия”, Funktsional. Anal. i Prilozhen., 24:3 (1990),  86–87  mathnet  mathscinet  zmath; Funct. Anal. Appl., 24:3 (1990), 247–249  isi 11
52. O. I. Mokhov, E. V. Ferapontov, “Non-local Hamiltonian operators of hydrodynamic type related to metrics of constant curvature”, Uspekhi Mat. Nauk, 45:3(273) (1990),  191–192  mathnet  mathscinet  zmath; Russian Math. Surveys, 45:3 (1990), 218–219  isi 60
53. O. I. Mokhov, “A Hamiltonian structure of evolution in the space variable $x$ for the Korteweg–de Vries equation”, Uspekhi Mat. Nauk, 45:1(271) (1990),  181–182  mathnet  mathscinet  zmath; Russian Math. Surveys, 45:1 (1990), 218–220  isi 3
1989
54. O. I. Mokhov, “Commuting differential operators of rank 3, and nonlinear differential equations”, Izv. Akad. Nauk SSSR Ser. Mat., 53:6 (1989),  1291–1315  mathnet  mathscinet  zmath; Math. USSR-Izv., 35:3 (1990), 629–655 40
55. O. I. Mokhov, “Canonical variables for the two-dimensional hydrodynamics of an incompressible fluid with vorticity”, TMF, 78:1 (1989),  136–139  mathnet  mathscinet  zmath; Theoret. and Math. Phys., 78:1 (1989), 97–99  isi 4
1988
56. O. I. Mokhov, “Dubrovin–Novikov type Poisson brackets (DN-brackets)”, Funktsional. Anal. i Prilozhen., 22:4 (1988),  92–93  mathnet  mathscinet  zmath; Funct. Anal. Appl., 22:4 (1988), 336–338 38
1987
57. O. I. Mokhov, “Hamiltonian differential operators and contact geometry”, Funktsional. Anal. i Prilozhen., 21:3 (1987),  53–60  mathnet  mathscinet  zmath; Funct. Anal. Appl., 21:3 (1987), 217–223  isi 17
58. O. I. Mokhov, “On the Hamiltonian property of an arbitrary evolution system on the set of stationary points of its integral”, Izv. Akad. Nauk SSSR Ser. Mat., 51:6 (1987),  1345–1352  mathnet  mathscinet  zmath; Math. USSR-Izv., 31:3 (1988), 657–664 14
1985
59. O. I. Mokhov, “Local third-order Poisson brackets”, Uspekhi Mat. Nauk, 40:5(245) (1985),  257–258  mathnet  mathscinet  zmath; Russian Math. Surveys, 40:5 (1985), 233–234 12
1984
60. O. I. Mokhov, “The Hamiltonian property of an evolutionary flow on the set of stationary points of its integral”, Uspekhi Mat. Nauk, 39:4(238) (1984),  173–174  mathnet  mathscinet  zmath; Russian Math. Surveys, 39:4 (1984), 133–134  isi 11
1982
61. O. I. Mokhov, “Commuting ordinary differential operators of rank 3 corresponding to an elliptic curve”, Uspekhi Mat. Nauk, 37:4(226) (1982),  169–170  mathnet  mathscinet  zmath; Russian Math. Surveys, 37:4 (1982), 129–130  isi 18

1995
62. O. I. Mokhov, S. P. Novikov, A. K. Pogrebkov, “Irina Yakovlevna Dorfman (obituary)”, Uspekhi Mat. Nauk, 50:6(306) (1995),  151–156  mathnet  mathscinet  zmath; Russian Math. Surveys, 50:6 (1995), 1241–1246  isi 1

Presentations in Math-Net.Ru
1. Об алгебро-геометрическом подходе к построению ортогональных криволинейных координат, ортогональных сетей и полугамильтоновых систем гидродинамического типа
O. I. Mokhov
Conference "50 years of finite-gap integration"
September 17, 2024 15:00   
2. Algebraic-geometry approach to constructing metrics of diagonal curvature, orthogonal nets and semi-Hamiltonian systems of hydrodynamic type
O. I. Mokhov
Seminar of the Department of Geometry and Topology "Geometry, Topology and Mathematical Physics", Steklov Mathematical Institute of RAS (Novikov Seminar)
November 22, 2023 18:30   
3. Algebraic geometry approach to constructing metrics of diagonal curvature, orthogonal nets and semi-Hamiltonian systems of hydrodynamic type
O. I. Mokhov
Constructive Methods of the Theory of Riemann Surfaces and Applications
November 14, 2023 16:45   
4. Метрики диагональной кривизны и связанные с ними интегрируемые системы дифференциальной геометрии и математической физики (3)
O. I. Mokhov
10th Youth Summer School-Conference on Geometric Methods of Mathematical Physics
July 15, 2023 09:30   
5. Метрики диагональной кривизны и связанные с ними интегрируемые системы дифференциальной геометрии и математической физики (2)
O. I. Mokhov
10th Youth Summer School-Conference on Geometric Methods of Mathematical Physics
July 13, 2023 11:30   
6. Метрики диагональной кривизны и связанные с ними интегрируемые системы дифференциальной геометрии и математической физики (1)
O. I. Mokhov
10th Youth Summer School-Conference on Geometric Methods of Mathematical Physics
July 12, 2023 15:00   
7. Геометрия подмногообразий с потенциалом нормалей и ее приложения в математической физике
O. I. Mokhov
Conference “Geometry, topology and mathematical physics” on the occasion of the 85th anniversary of S.P. Novikov and the 80th anniversary of V.M. Buchstaber
April 12, 2023 11:50   
8. Non-flat Frobenius manifolds: geometry and integrability
O. I. Mokhov
Russian-Chinese Conference «Integrable Systems and Geometry»
December 22, 2021 11:00   
9. Curved WDVV equations and the theory of submanifolds in pseudo-Euclidean spaces
O. I. Mokhov
International Conference "Nonlinear Waves and Frobenius Structures in Geometry and Physics" Dedicated to the Memory of Boris Dubrovin
November 19, 2021 15:30   
10. Метрики диагональной кривизны
O. I. Mokhov
Seminar of the Department of Geometry and Topology "Geometry, Topology and Mathematical Physics", Steklov Mathematical Institute of RAS (Novikov Seminar)
April 19, 2017 18:30
11. Commuting ordinary differential operators of arbitrary genus and arbitrary rank with polynomial coefficients
O. I. Mokhov
International conference "Geometry, Topology, Integrable Systems" in honour of S. P. Novikovs 75th birthday
June 17, 2013 16:50   
12. On Hamiltonian geometry of the associativity equations
O. I. Mokhov, N. Pavlenko
International Workshop «Geometric Structures in Integrable Systems»
October 30, 2012 14:40   
13. Коммутирующие обыкновенные дифференциальные операторы ранга 4, отвечающие эллиптической кривой II
O. I. Mokhov
Seminar of the Department of Geometry and Topology "Geometry, Topology and Mathematical Physics", Steklov Mathematical Institute of RAS (Novikov Seminar)
November 9, 2011 18:30
14. Коммутирующие обыкновенные дифференциальные операторы ранга 4, отвечающие эллиптической кривой
O. I. Mokhov
Seminar of the Department of Geometry and Topology "Geometry, Topology and Mathematical Physics", Steklov Mathematical Institute of RAS (Novikov Seminar)
November 2, 2011 18:30
15. Согласованные метрики и римановы инварианты. II
O. I. Mokhov
Seminar of the Department of Geometry and Topology "Geometry, Topology and Mathematical Physics", Steklov Mathematical Institute of RAS (Novikov Seminar)
November 3, 2010 18:30
16. Согласованные метрики и римановы инварианты. I
O. I. Mokhov
Seminar of the Department of Geometry and Topology "Geometry, Topology and Mathematical Physics", Steklov Mathematical Institute of RAS (Novikov Seminar)
October 27, 2010 18:30
17. Совместность на кубических решетках детерминантов произвольных порядков
O. I. Mokhov
Seminar of the Department of Geometry and Topology "Geometry, Topology and Mathematical Physics", Steklov Mathematical Institute of RAS (Novikov Seminar)
March 4, 2009
18. О двойственности в специальном классе многообразий
O. I. Mokhov
Seminar of the Department of Geometry and Topology "Geometry, Topology and Mathematical Physics", Steklov Mathematical Institute of RAS (Novikov Seminar)
April 30, 2008
19. Плоские подмногообразия с плоской нормальной связностью, уравнения ассоциативности и фробениусовы структуры
O. I. Mokhov
Seminar of the Department of Geometry and Topology "Geometry, Topology and Mathematical Physics", Steklov Mathematical Institute of RAS (Novikov Seminar)
November 10, 2004

Organisations
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024