Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Kamlovskii, Oleg Vital'evich

Statistics Math-Net.Ru
Total publications: 36
Scientific articles: 36

Number of views:
This page:2072
Abstract pages:15614
Full texts:6876
References:2125
Associate professor
Doctor of physico-mathematical sciences
E-mail:

https://www.mathnet.ru/eng/person8966
List of publications on Google Scholar
https://mathscinet.ams.org/mathscinet/MRAuthorID/637700

Publications in Math-Net.Ru Citations
2025
1. O. V. Kamlovskii, K. N. Pankov, “A class of discrete functions constructed from several linear recurrence sequences over primal residue rings”, Diskr. Mat., 37:1 (2025),  9–21  mathnet
2024
2. A. D. Bugrov, O. V. Kamlovskii, “Properties of classes of Boolean functions constructed from several linear recurrences over a residue ring $\mathbb{Z}_{2^n}$”, Mat. Vopr. Kriptogr., 15:4 (2024),  9–22  mathnet
3. O. V. Kamlovskii, V. V. Mizerov, “Frequency characteristics of sequences generated by the stream encryption algorithm GEA-1”, Mat. Vopr. Kriptogr., 15:3 (2024),  67–82  mathnet
4. A. D. Bugrov, O. V. Kamlovskii, V. V. Mizerov, “Some properties of sequences generated by the GEA-1 encryption algorithm”, Prikl. Diskr. Mat. Suppl., 2024, no. 17,  75–78  mathnet
2023
5. O. V. Kamlovskii, V. V. Mizerov, “Cross-correlation function for the representations of one class of sequences over Galois rings”, Mat. Vopr. Kriptogr., 14:4 (2023),  71–88  mathnet
6. O. V. Kamlovskii, K. N. Pankov, “Some classes of resilient functions over Galois rings and their linear characteristics”, Prikl. Diskr. Mat. Suppl., 2023, no. 16,  18–22  mathnet
2022
7. O. V. Kamlovskii, V. V. Mizerov, “Distribution properties in the sum of linear recurring and the counter sequences over Galois rings”, Mat. Vopr. Kriptogr., 13:4 (2022),  53–67  mathnet  mathscinet 1
8. O. V. Kamlovskii, K. N. Pankov, “Some classes of balanced functions over finite fields with a small value of the linear characteristic”, Probl. Peredachi Inf., 58:4 (2022),  103–117  mathnet  mathscinet; Problems Inform. Transmission, 58:4 (2022), 389–402 2
2021
9. A. R. Vasin, O. V. Kamlovskii, V. V. Mizerov, “Properties of distributions of elements in one class of sequences over Galois rings”, Mat. Vopr. Kriptogr., 12:4 (2021),  25–41  mathnet 2
2020
10. O. V. Kamlovskii, V. V. Mizerov, “Properties of the output sequences of a combination generators over finite fields”, Mat. Vopr. Kriptogr., 11:4 (2020),  23–47  mathnet
11. O. V. Kamlovskiy, “Cross-correlation coefficients for digit sequences of uniform linear recurrent sequences over the residue ring”, Mat. Vopr. Kriptogr., 11:1 (2020),  47–62  mathnet 3
2018
12. A. D. Bugrov, O. V. Kamlovskii, “Parameters of a class of functions over a finite field”, Mat. Vopr. Kriptogr., 9:4 (2018),  31–52  mathnet  elib 6
2017
13. O. V. Kamlovskii, “The sum of modules of Walsh coefficients for some balanced Boolean functions”, Mat. Vopr. Kriptogr., 8:4 (2017),  75–98  mathnet  mathscinet  elib 4
14. M. M. Glukhov, O. V. Kamlovskii, “Application of Gauss sums to calculate the exact values of the number of appearances of elements on cycles of linear recurrences”, Prikl. Diskr. Mat., 2017, no. 36,  25–50  mathnet
15. O. V. Kamlovskii, “Occurrence numbers for vectors in cycles of output sequences of binary combining generators”, Probl. Peredachi Inf., 53:1 (2017),  92–100  mathnet  elib; Problems Inform. Transmission, 53:1 (2017), 84–91  isi  scopus 5
2016
16. O. V. Kamlovskii, “Estimating the number of solutions of systems of nonlinear equations with linear recurring arguments by the spectral method”, Diskr. Mat., 28:2 (2016),  27–43  mathnet  mathscinet  elib; Discrete Math. Appl., 27:4 (2017), 199–211  isi  scopus 9
17. O. V. Kamlovskiy, “Nonlinearity of a class of Boolean functions constructed using significant bits of linear recurrences over the ring $\mathbb Z_{2^n}$”, Mat. Vopr. Kriptogr., 7:3 (2016),  29–46  mathnet  mathscinet  elib 4
18. O. V. Kamlovskiy, “On the Hamming distance between binary representations of linear recurrent sequences over field $GF(2^k)$ and ring $\mathbb{Z}_{2^n}$”, Mat. Vopr. Kriptogr., 7:1 (2016),  71–82  mathnet  mathscinet  elib 4
2015
19. R. A. De La Krus Khimenes, O. V. Kamlovskii, “The sum of modules of Walsh coefficients of Boolean functions”, Diskr. Mat., 27:4 (2015),  49–66  mathnet  mathscinet  elib; Discrete Math. Appl., 26:5 (2016), 259–272  isi 7
20. O. V. Kamlovskiy, “Distribution properties of rows and columns for matrix linear recurrent sequences of the first order”, Mat. Vopr. Kriptogr., 6:4 (2015),  65–76  mathnet  mathscinet  elib 3
21. I. B. Bilyak, O. V. Kamlovskii, “Frequency characteristics of cycles in output sequences generated by combining generators over the field of two elements”, Prikl. Diskr. Mat., 2015, no. 3(29),  17–31  mathnet 7
2014
22. O. V. Kamlovsky, “Nonabsolute bounds for incomplete exponential sums of elements of linear recurrent sequences and their applications”, Mat. Vopr. Kriptogr., 5:3 (2014),  17–34  mathnet 1
23. O. V. Kamlovskii, “Equidistributed sequences over finite fields produced by one class of linear recurring sequences over residue rings”, Probl. Peredachi Inf., 50:2 (2014),  60–76  mathnet  elib; Problems Inform. Transmission, 50:2 (2014), 171–185  isi  scopus 6
24. O. V. Kamlovskii, “Distribution of $r$-tuples in one class of uniformly distributed sequences over residue rings”, Probl. Peredachi Inf., 50:1 (2014),  98–115  mathnet; Problems Inform. Transmission, 50:1 (2014), 90–105  isi  scopus 6
2013
25. O. V. Kamlovskii, “Frequency characteristics of coordinate sequences of linear recurrences over Galois rings”, Izv. RAN. Ser. Mat., 77:6 (2013),  71–96  mathnet  mathscinet  zmath  elib; Izv. Math., 77:6 (2013), 1130–1154  isi  elib  scopus 14
26. O. V. Kamlovskii, “The number of different $r$-patterns in linear recurrent sequences over Galois rings”, Mat. Vopr. Kriptogr., 4:3 (2013),  49–82  mathnet 1
27. O. V. Kamlovskii, “Distribution properties of sequences produced by filtering generators”, Prikl. Diskr. Mat., 2013, no. 3(21),  11–25  mathnet 12
2012
28. O. V. Kamlovskii, “Improved bounds for the number of occurrences of elements in linear recurrence sequences over Galois rings”, Fundam. Prikl. Mat., 17:7 (2012),  97–115  mathnet; J. Math. Sci., 197:4 (2014), 512–524  scopus 1
29. D. N. Bylkov, O. V. Kamlovskii, “Parameters of Boolean functions generated by the most significant bits of linear recurrent sequences”, Mat. Vopr. Kriptogr., 3:4 (2012),  25–53  mathnet 9
30. O. V. Kamlovskii, “The Sidelnikov Method for Estimating the Number of Signs on Segments of Linear Recurrence Sequences over Galois Rings”, Mat. Zametki, 91:3 (2012),  371–382  mathnet  mathscinet  elib; Math. Notes, 91:3 (2012), 354–363  isi  elib  scopus 4
2010
31. O. V. Kamlovskii, “Exponential sums method for frequencies of most significant bit $r$-patterns in linear recurrent sequences over $\mathbb{Z}_{2^n}$”, Mat. Vopr. Kriptogr., 1:4 (2010),  33–62  mathnet 9
2009
32. O. V. Kamlovskii, “Frequency characteristics of linear recurrence sequences over Galois rings”, Mat. Sb., 200:4 (2009),  31–52  mathnet  mathscinet  zmath  elib; Sb. Math., 200:4 (2009), 499–519  isi  elib  scopus 22
2008
33. O. V. Kamlovskii, “Estimates of the number of occurrences of vectors on cycles of linear recurring sequences over a finite field”, Diskr. Mat., 20:4 (2008),  102–112  mathnet  mathscinet  zmath  elib; Discrete Math. Appl., 18:6 (2008), 595–605  scopus 3
34. D. N. Bylkov, O. V. Kamlovskii, “Occurrence Indices of Elements in Linear Recurrence Sequences over Primary Residue Rings”, Probl. Peredachi Inf., 44:2 (2008),  101–109  mathnet  mathscinet; Problems Inform. Transmission, 44:2 (2008), 161–168  isi  scopus 3
2000
35. O. V. Kamlovskii, A. S. Kuz'min, “Bounds for the number of occurrences of elements in a linear recurring sequence over a Galois ring”, Fundam. Prikl. Mat., 6:4 (2000),  1083–1094  mathnet  mathscinet  zmath 21
1998
36. O. V. Kamlovskii, A. S. Kuz'min, “Distribution of elements on cycles of linear recurrent sequences over Galois rings”, Uspekhi Mat. Nauk, 53:2(320) (1998),  149–150  mathnet  mathscinet  zmath; Russian Math. Surveys, 53:2 (1998), 392–393  isi  scopus 9

Organisations
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025