O. K. Sheinman, Current algebras on Riemann surfaces, De Gruyter Expositions in Mathematics, 58, Walter de Gruyter GmbH & Co, Berlin–Boston, 2012 , 150 pp.
O. K. Sheinman, “Duality in some discrete minimization problems”, Russian Math. Surveys, 33:2 (1978), 251–252
M. Schlichenmaier, O. K. Sheinman, “Wess–Zumino–Witten–Novikov theory, Knizhnik–Zamolodchikov equations, and Krichever–Novikov algebras”, Russian Math. Surveys, 54:1 (1999), 213–249
2.
O. K. Sheinman, Current algebras on Riemann surfaces, De Gruyter Expositions in Mathematics, 58, Walter de Gruyter GmbH & Co, Berlin–Boston, 2012 , 150 pp.
M. Schlichenmaier, O. K. Scheinman, “The Sugawara construction and Casimir operators for Krichever-Novikov algebras”, Complex analysis and representation theory, 1, J. Math. Sci. (New York), 92:2 (1998), 3807–3834 , arXiv: q-alg/9512016
I. M. Krichever, O. K. Sheinman, “Lax Operator Algebras”, Funct. Anal. Appl., 41:4 (2007), 284–294
5.
M. Schlichenmaier, O. K. Sheinman, “Knizhnik–Zamolodchikov equations for positive genus and Krichever–Novikov algebras”, Russian Math. Surveys, 59:4 (2004), 737–770
6.
O. K. Sheinman, “Elliptic affine Lie algebras”, Funct. Anal. Appl., 24:3 (1990), 210–219
7.
O. K. Sheinman, “Affine Lie Algebras on Riemann Surfaces”, Funct. Anal. Appl., 27:4 (1993), 266–272
8.
O. K. Sheinman, “Highest weight modules over certain quasigraded Lie algebras on elliptic curves”, Funct. Anal. Appl., 26:3 (1992), 203–208
9.
O. K. Sheinman, “The Fermion Model of Representations of Affine Krichever–Novikov Algebras”, Funct. Anal. Appl., 35:3 (2001), 209–219
10.
O. K. Sheinman, “Weil Modules with Highest Weight for Affine Lie Algebras on Riemann Surfaces”, Funct. Anal. Appl., 29:1 (1995), 44–55
11.
M. Schlichenmaier, O. K. Sheinman, “Central extensions of Lax operator algebras”, Russian Math. Surveys, 63:4 (2008), 727–766
12.
O. K. Sheinman, “Lax operator algebras and integrable systems”, Russian Math. Surveys, 71:1 (2016), 109–156
13.
O. K. Sheinman, “Highest weight representations of Krichever–Novikov algebras and integrable systems”, Russian Math. Surveys, 60:2 (2005), 370–372
14.
O. K. Sheinman, “Second order Casimirs for the affine Krichever–Novikov algebras $\widehat{\mathfrak{gl}}_{g,2}$ and $\widehat{\mathfrak{sl}}_{g,2}$”, Mosc. Math. J., 1:4 (2001), 605–628
O. K. Sheinman, “Hierarchies of finite-dimensional Lax equations with a spectral parameter on a Riemann surface and semisimple Lie algebras”, Theoret. and Math. Phys., 185:3 (2015), 1816–1831
17.
O. K. Sheinman, “Integrable Systems of Algebraic Origin and Separation of Variables”, Funct. Anal. Appl., 52:4 (2018), 316–320
18.
O. K. Sheinman, “Semisimple Lie Algebras and Hamiltonian Theory of Finite-Dimensional Lax Equations with Spectral Parameter on a Riemann Surface”, Proc. Steklov Inst. Math., 290 (2015), 178–188
19.
Oleg K. Sheinman, “Global current algebras and localization on Riemann surfaces”, Mosc. Math. J., 15:4 (2015), 833–846
O. K. Sheinman, “Lax operators algebras and gradings on semisimple Lie algebras”, Dokl. Math., 91:2 (2015), 160–162
21.
O. K. Sheinman, “Krichever–Novikov algebras and self-duality equations on Riemann surfaces”, Russian Math. Surveys, 56:1 (2001), 176–178
22.
O. K. Sheinman, “Lax operator algebras of type $G_2$”, Dokl. Math., 89:2 (2014), 151–153
23.
O. K. Sheinman, “Second-order Casimir operators for the affine Krichever–Novikov algebras $\widehat{\mathfrak{gl}}_{g,2}$ and $\widehat{\mathfrak{sl}}_{g,2}$”, Russian Math. Surveys, 56:5 (2001), 986–987
24.
P. I. Borisova, O. K. Sheinman, “Sistemy Khitchina na giperellipticheskikh krivykh”, Analiz i matematicheskaya fizika, Sbornik statei. K 70-letiyu so dnya rozhdeniya professora Armena Glebovicha Sergeeva, Tr. MIAN, 311, MIAN, M., 2020, 27–40
O. K. Sheinman, “Certain reductions of Hitchin systems of rank 2 and genera 2 and 3”, Dokl. Math., 97:2 (2018), 144–146
26.
O. K. Sheinman, “Lax operator algebras and gradings on semisimple Lie algebras”, Transform. Groups, 21:1 (2016), 181–196 , First online: September, 2015, arXiv: 1406.5017
O. K. Sheinman, “Lax Operator Algebras and Integrable Hierarchies”, Proc. Steklov Inst. Math., 263 (2008), 204–213
28.
Russian Math. Surveys, 79:4 (2024), 683–720
29.
O. K. Sheinman, “Lax operator algebras and Hamiltonian integrable hierarchies”, Russian Math. Surveys, 66:1 (2011), 145–171
30.
O. K. Sheinman, “Separation of Variables for Hitchin Systems with the Structure Group $\mathrm {SO}(4)$ on Genus $2$ Curves”, Proc. Steklov Inst. Math., 325 (2024), 292–303
31.
O. K. Sheinman, “Lax operator algebras of type $G_2$”, Topology, Geometry, Integrable Systems, and Mathematical Physics: Novikov's Seminar 2012–2014, Advances in the Mathematical Sciences, Amer. Math. Soc. Transl. Ser. 2, 234, eds. V. M. Buchstaber, B. A. Dubrovin, I. M. Krichever, Amer. Math. Soc., Providence, RI, 2014, 373–392 , arXiv: 1304.2510
O. K. Sheinman, “Lax equations and the Knizhnik–Zamolodchikov connection”, Geometric Methods in Physics, XXX Workshop, Białowieża, Poland, 2011, Trends in Mathematics, Springer, Basel, 2013, 405–413 , arXiv: 1009.4706
O. K. Sheinman, “Krichever–Novikov algebras, their representations and applications in geometry and mathematical physics”, Proc. Steklov Inst. Math., 274, suppl. 1 (2011), 85–161
34.
O. K. Sheinman, “Projective Flat Connections on Moduli Spaces of Riemann Surfaces and the Knizhnik–Zamolodchikov Equations”, Proc. Steklov Inst. Math., 251 (2005), 293–304
35.
O. K. Sheinman, “Hamiltonian string formalism and discrete groups”, Funct. Anal. Appl., 23:2 (1989), 124–128
36.
O. K. Sheinman, “Duality in some discrete minimization problems”, Russian Math. Surveys, 33:2 (1978), 251–252
37.
Oleg Sheinman, “Quantization of Lax integrable systems and conformal field theory”, Homotopy algebras, deformation theory and quantization, Banach Cent. Publ., 123, Banach Center Publications, Institute of Mathematics Polish Academy of Sciences, Warsaw, 2021, 111–122
38.
O. K. Sheinman, “Quantization of integrable systems with spectral parameter on a Riemann surface”, Dokl. Math., 102:3 (2020), 524–527
39.
O. K. Sheinman, “Matrix divisors on Riemann surfaces and Lax operator algebras”, Trans. Moscow Math. Soc., 78 (2017), 109–121
40.
O. K. Sheinman, “Almost graded current algebras on the symmetric square of a curve”, Russian Math. Surveys, 72:2 (2017), 384–386
41.
O. K. Sheinman, “Lax operator algebras and Lax equations”, after series of authors talks at Southeastern Lie Theory Workshop, College of Charleston, Charlestone, SC, USA, December 16–18, 2012, algebras, Lie superalgebras, vertex algebras and related topics, Proc. Sympos. Pure Math., 92, eds. K. C. Misra, D. K. Nakano, B. J. Parshall, Amer. Math. Soc., Providence, RI, 2016, 221–246http://bookstore.ams.org/pspum-92/
42.
O. K. Sheinman, “On certain current algebras related to finite-zone integration”, Geometry, topology, and mathematical physics, Amer. Math. Soc. Transl. Ser. 2, 224, Amer. Math. Soc., Providence, RI, 2008, 271–284
43.
O. K. Sheinman, “Krichever–Novikov algebras and their representations”, Noncommutative geometry and representation theory in mathematical physics, Contemp. Math., 391, Amer. Math. Soc., Providence, RI, 2005, 313–321
44.
O. K. Sheinman, “Affine Krichever-Novikov algebras, their representations and applications”, Geometry, topology, and mathematical physics, Amer. Math. Soc. Transl. Ser. 2, 212, Amer. Math. Soc., Providence, RI, 2004, 297–316
45.
O. K. Sheinman, Basic representation theory, MCCME, Moscow, 2005
46.
I. M. Paramonova, O. K. Sheinman, Zadachi seminara “Algebry Li i ikh prilozheniya”, MTsNMO, M., 2004 , 48 pp.
47.
O. K. Sheĭnman, “Second-orde Casimirs for the affine Krichever-Novikov algebras $\widehat{\mathfrak{gl}}\sb{g,2}$ and $\widehat{\mathfrak{sl}}\sb{g,2}$”, Fundamental mathematics today, MCCME, Moscow, 2003, 372–404
48.
O. K. Sheinman, “Orbits and representations of Krichever-Novikov affine-type algebras”, Algebra, 3, J. Math. Sci., 82:6 (1996), 3834–3843
49.
O. K. Sheinman, “Integrable many-body systems of Calogero-Moser-Sutherland type in high dimension”, Internat. Math. Res. Notices, 1996, no. 1, 27–36
50.
O. K. Sheĭnman, “Representations of Krichever-Novikov algebras”, Topics in topology and mathematical physics, Amer. Math. Soc. Transl. Ser. 2, 170, Amer. Math. Soc., Providence, RI, 1995, 185–197
51.
O. K. Sheinman, “The Krichever–Novikov algebras and CCC-groups”, Russian Math. Surveys, 50:5 (1995), 1097–1099
52.
O. K. Sheinman, “Kernel of evolution operator in the space of sections of a vector bundle as integral over trajectories”, Funct. Anal. Appl., 22:3 (1988), 251–253
53.
O. K. Sheinman, “Dedekind $\eta$-function and indefinite quadratic forms”, Funct. Anal. Appl., 19:3 (1985), 232–234
54.
S. S. Lebedev, O. K. Sheĭnman, “Dual approach to integer programming”, Engrg. Cybernetics, 21:1 (1983), 140–147 (1984)
55.
S. S. Lebedev, O. K. Sheĭnman, “Duality in integer programming”, Èkonom. i Mat. Metody, 17:3 (1981), 593–608
56.
O. K. Šeĭnman, “Duality and subadditive functions in integer programming”, Èkonom. i Mat. Metody, 16:4 (1980), 808–810
57.
O. K. Šeĭnman, “Group-theoretic methods of constructing cuts in integer programming”, Mathematical methods of solution of economic problems, v. 8, Optimal'noe Planirovanie i Upravlenie [Optimal Planning and Control Series], Nauka, Moscow, 1979, 44–49
58.
O. K. Sheinman, Mat. Sb.
59.
O. K. Sheinman, Modern problems of mathematics, mechanics, and mathematical physics. Part II, Collected papers, Tr. Mat. Inst. Steklova, 294, MAIK Nauka/Interperiodica, Moscow, 2016, 325–327
60.
V. M. Buchstaber, A. N. Varchenko, A. P. Veselov, P. G. Grinevich, S. Grushevsky, S. Yu. Dobrokhotov, A. V. Zabrodin, A. V. Marshakov, A. E. Mironov, N. A. Nekrasov, S. P. Novikov, A. Yu. Okounkov, M. A. Olshanetsky, A. K. Pogrebkov, I. A. Taimanov, M. A. Tsfasman, L. O. Chekhov, O. K. Sheinman, S. B. Shlosman, “Igor' Moiseevich Krichever (on his 70th birthday)”, Russian Math. Surveys, 76:4 (2021), 733–743
61.
V. A. Alexandrov, L. D. Beklemishev, V. M. Buchstaber, A. Yu. Vesnin, A. A. Gaifullin, N. P. Dolbilin, N. Yu. Erokhovets, M. D. Kovalev, V. S. Makarov, S. P. Novikov, D. O. Orlov, A. N. Parshin, I. Kh. Sabitov, D. V. Treschev, O. K. Sheinman, E. V. Shchepin, “Mikhail Ivanovich Shtogrin (on his 80th birthday)”, Russian Math. Surveys, 74:6 (2019), 1159–1162
62.
N. N. Andreev, V. M. Buchstaber, A. I. Garber, V. V. Kozlov, S. P. Konovalov, A. A. Mal'tsev, Yu. V. Nesterenko, S. P. Novikov, A. N. Parshin, I. Kh. Sabitov, A. L. Semenov, A. G. Sergeev, O. K. Sheinman, M. I. Shtogrin, E. V. Shchepin, “Nikolai Petrovich Dolbilin (on his 70th birthday)”, Russian Math. Surveys, 69:1 (2014), 181–182
63.
V. M. Buchstaber, L. O. Chekhov, S. Yu. Dobrokhotov, S. M. Gusein-Zade, Yu. S. Ilyashenko, S. M. Natanzon, S. P. Novikov, G. I. Olshanski, A. K. Pogrebkov, O. K. Sheinman, S. B. Shlosman, M. A. Tsfasman, “Igor Krichever”, Mosc. Math. J., 10:4 (2010), 833–834
64.
V. Buchstaber, S. Gusein-Zade, Yu. Ilyashenko, V. Kozlov, S. Natanzon, O. Sheinman, A. Sossinsky, D. Treschev, M. Tsfasman, “Armen Sergeev”, Mosc. Math. J., 9:2 (2009), 439–440
65.
S. M. Gusein-Zade, Yu. S. Ilyashenko, G. A. Kabatiansky, S. K. Lando, A. G. Sergeev, O. K. Sheinman, O. V. Schwarzman, M. A. Tsfasman, È. B. Vinberg, “Sergey Natanzon”, Mosc. Math. J., 8:4 (2008), 843–844
66.
V. M. Buchstaber, Yu. S. Ilyashenko, I. M. Krichever, O. K. Sheinman, A. B. Sossinski, M. A. Tsfasman, “Sergey Petrovich Novikov”, Mosc. Math. J., 3:4 (2003), 1206–1208
67.
Geometriya, topologiya, matematicheskaya fizika, Sbornik statei. K 85-letiyu akademika Sergeya Petrovicha Novikova, Trudy MIAN, 325, ed. V. M. Bukhshtaber, P. G. Grinevich, I. A. Dynnikov, O. K. Sheinman, MIAN, M., 2024 , 333 pp.
68.
Topologiya i fizika, Sbornik statei. K 80-letiyu so dnya rozhdeniya akademika Sergeya Petrovicha Novikova, Trudy MIAN, 302, ed. V. M. Bukhshtaber, I. A. Dynnikov, O. K. Sheinman, MAIK «Nauka/Interperiodika», M., 2018 , 399 pp.
Об обращении преобразования Абеля–Прима с помощью тэта функций O. K. Sheinman Seminar of the Department of Geometry and Topology "Geometry, Topology and Mathematical Physics", Steklov Mathematical Institute of RAS (Novikov Seminar) March 6, 2024 18:30
Обратная задача для систем Хитчина над $SL_2$ O. K. Sheinman Seminar of the Department of Geometry and Topology "Geometry, Topology and Mathematical Physics", Steklov Mathematical Institute of RAS (Novikov Seminar) April 20, 2022 18:30
Продвижения в теории систем Хитчина O. K. Sheinman Seminar of the Department of Geometry and Topology "Geometry, Topology and Mathematical Physics", Steklov Mathematical Institute of RAS (Novikov Seminar) April 24, 2019 18:30
Спектральные кривые и координаты Дарбу для систем Хитчина O. K. Sheinman Seminar of the Department of Geometry and Topology "Geometry, Topology and Mathematical Physics", Steklov Mathematical Institute of RAS (Novikov Seminar) October 24, 2018 18:30
Спектральные кривые гиперэллиптических систем Хитчина O. K. Sheinman Seminar of the Department of Geometry and Topology "Geometry, Topology and Mathematical Physics", Steklov Mathematical Institute of RAS (Novikov Seminar) May 23, 2018 16:45
Некоторые редукции систем Хитчина ранга 2 родов 2 и 3 O. K. Sheinman Seminar of the Department of Geometry and Topology "Geometry, Topology and Mathematical Physics", Steklov Mathematical Institute of RAS (Novikov Seminar) August 30, 2017 14:00
Алгебры операторов Лакса O. K. Sheinman Seminar of the Department of Geometry and Topology "Geometry, Topology and Mathematical Physics", Steklov Mathematical Institute of RAS (Novikov Seminar) March 21, 2007
Geometry, Topology, and Mathematical Physics, Collected papers. Dedicated to Academician Sergei Petrovich Novikov on the occasion of his 85th birthday, Trudy Mat. Inst. Steklova, 325, ed. V. M. Buchstaber, P. G. Grinevich, I. A. Dynnikov, O. K. Sheinman, 2024, 333 с. http://mi.mathnet.ru/book1987
Topology and physics, Collected papers. Dedicated to Academician Sergei Petrovich Novikov on the occasion of his 80th birthday, Trudy Mat. Inst. Steklova, 302, ed. V. M. Buchstaber, I. A. Dynnikov, O. K. Sheinman, 2018, 399 с. http://mi.mathnet.ru/book1715
O. K. Sheinman, Krichever–Novikov Algebras, their Representations and Applications in Geometry and Mathematical Physics, Sovrem. Probl. Mat., 10, 2007, 142 с. http://mi.mathnet.ru/book230