Fractional integrals and derivatives, variable order potential type operator, hypersingular integral
Main publications:
Umarkhadzhiev S. M. Drobotov Yu. E., “Potentsial Rissa v obobschennykh grand-prostranstvakh Lebega”, Vestnik Akademii nauk Chechenskoi Respubliki, 2015, № 4, 26–29
Drobotov Yu. E. Umarkhadzhiev S. M., “Potentsial Rissa s odnorodnym yadrom v grand-prostranstvakh Lebega na poluosi”, Vestnik Akademii nauk Chechenskoi Respubliki, 2018, № 1 (38), 18–25
Zhuravlev G. A., Drobotov Yu. E., Piskunov A. S., Maksimets S. V., “The comparative evaluation of precision of classical and numerical solutions of contact problems”, Material Physics and Mechanics, 37:1 (2018), 84–91
Vakulov B., Drobotov Yu., “The Riesz Potential Type Operator with a Power-Logarithmic Kernel in the Generalized Hölder Spaces on a Sphere”, Springer Proceedings in Materials, 108 (2020), 669–678
Vakulov, B. G., Drobotov, Yu. E., “Riesz Potential with Logarithmic Kernel in Generalized Hölder Spaces: Theorems on Inversion and Isomorphisms”, In T. Škrinjarić, M. Čižmešija, & B. Christiansen (Ed.), Recent Applications of Financial Risk Modelling and Portfolio Management (pp. 275-296). IGI Global. https://doi.org/10.4018/978-1-7998-5083-0.ch014, 2021, 275–296
Yu. E. Drobotov, B. G. Vakulov, “On the weighted generalized Hölder continuity of a hypersingular integral over a metric measure space”, Sib. Èlektron. Mat. Izv., 21:2 (2024), 1347–1369
2020
2.
B. G. Vakulov, Yu. E. Drobotov, “Riesz Potential with Integrable Density in Hölder-Variable Spaces”, Mat. Zametki, 108:5 (2020), 669–678; Math. Notes, 108:5 (2020), 652–660
B. G. Vakulov, Yu. E. Drobotov, “Variable order Riesz potential over $\mathbb{\dot{R}}^n$ on weighted generalized variable Hölder spaces”, Sib. Èlektron. Mat. Izv., 14 (2017), 647–656