Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Imanuvilov, Oleg Yur'evich

E-mail:

https://www.mathnet.ru/eng/person9077
List of publications on Google Scholar
https://mathscinet.ams.org/mathscinet/MRAuthorID/344957

Publications in Math-Net.Ru Citations
2000
1. O. Yu. Imanuvilov, “Boundary controllability of hyperbolic equations”, Sibirsk. Mat. Zh., 41:4 (2000),  944–959  mathnet  zmath; Siberian Math. J., 41:4 (2000), 785–799 15
1999
2. A. V. Fursikov, O. Yu. Imanuvilov, “Exact controllability of the Navier–Stokes and Boussinesq equations”, Uspekhi Mat. Nauk, 54:3(327) (1999),  93–146  mathnet  mathscinet  zmath  elib; Russian Math. Surveys, 54:3 (1999), 565–618  isi  elib  scopus 135
1994
3. A. V. Fursikov, O. Yu. Imanuvilov, “Rate of convergence in the closure of a chain of moment equations that correspond to the Navier–Stokes system with a random right-hand side”, Differ. Uravn., 30:4 (1994),  699–711  mathnet  mathscinet; Differ. Equ., 30:4 (1994), 646–658
4. O. Yu. Imanuvilov, “A class of inverse problems for semilinear elliptic and parabolic equations”, Tr. Mosk. Mat. Obs., 55 (1994),  285–309  mathnet  mathscinet  zmath 1
5. A. V. Fursikov, O. Yu. Imanuvilov, “The rate of convergence of approximations for the closure of the Friedman–Keller chain in the case of large Reynolds numbers”, Mat. Sb., 185:2 (1994),  115–143  mathnet  mathscinet  zmath; Russian Acad. Sci. Sb. Math., 81:1 (1995), 235–259  isi 6
1993
6. O. Yu. Imanuvilov, “Optimal control problem for the backward heat equation”, Sibirsk. Mat. Zh., 34:1 (1993),  204–211  mathnet  mathscinet  zmath; Siberian Math. J., 34:1 (1993), 181–188  isi 1
1992
7. A. V. Fursikov, O. Yu. Imanuvilov, “On $\varepsilon$-controllability of the Stokes problem with distributed control concentrated on a subdomain”, Uspekhi Mat. Nauk, 47:1(283) (1992),  217–218  mathnet  mathscinet  zmath; Russian Math. Surveys, 47:1 (1992), 255–257  isi 5
1989
8. O. Yu. Imanuvilov, “Boundary control by semilinear evolution equations”, Uspekhi Mat. Nauk, 44:3(267) (1989),  185–186  mathnet  mathscinet  zmath; Russian Math. Surveys, 44:3 (1989), 183–184  isi 12
9. O. Yu. Imanuvilov, “On the existence of solutions in problems of the control of elliptic equations”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1989, no. 5,  70–73  mathnet  mathscinet  zmath
10. O. Yu. Imanuvilov, “On the uniqueness of a solution of problems of optimal control”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1989, no. 1,  85–88  mathnet  mathscinet  zmath

Organisations