P. S. Gevorgyan, I. Pop, “Movability of Morphisms in an Enriched Pro-Category and in a $J$-Shape Category”, Journal of Contemporary Mathematical Analysis, 59:1 (2024), 13–28
2023
2.
P. S. Gevorgyan, “Bi-equivariant fibrations”, Topology and its Applications, 329 (2023), 1–9 , arXiv: 2307.11488
P. S. Gevorgyan, “Equivariant Fibrations”, Journal of Mathematical Sciences, 276:4 (2023), 490–497
2022
5.
P. S. Gevorgyan, “On Orbit Spaces of Distributive Binary $G$-Spaces”, Math. Notes, 112:2 (2022), 177–182 , arXiv: 2308.12257
2021
6.
P. S. Gevorgyan, A. A. Nazaryan, “On Orbits and Bi-invariant Subsets of Binary $G$-Spaces”, Math. Notes, 109:1 (2021), 38–45 , arXiv: 2307.07236
7.
P. S. Gevorgyan, “Shape theory”, Journal of Mathematical Sciences (United States), 259:5 (2021), 583–627 , arXiv: 2307.12899
2020
8.
P. S. Gevorgyan, “Equivariant bundles”, Proceedings of the International Conference “Classical and Modern Geometry” Dedicated to the 100th Anniversary of the Birth of Professor Vyacheslav Timofeevich Bazylev. Moscow, April 22-25, 2019. Part 2, Itogi Nauki i Tekhniki. Ser. Sovrem. Mat. Pril. Temat. Obz., 180, VINITI, Moscow, 2020, 23–30
9.
P. S. Gevorgyan, I. Pop, “Movable morphisms in strong shape category”, Topology and its Applications, 275 (2020), 1–17
P. S. Gevorgyan, R. Jimenez, “On equivariant fibrations of $G$-CW-complexes”, Sb. Math., 210:10 (2019), 1428–1433 , arXiv: 2308.02953
2021
11.
P. S. Gevorgyan, “Shape theory”, J. Math. Sci., 259:5 (2021), 583–627
2018
12.
P. S. Gevorgyan, I. Pop, “Shape dimension of maps”, Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica, 86:1 (2018), 3–11 , arXiv: 2308.13843
P. S. Gevorgyan, “Groups of Invertible Binary Operations of a Topological Space”, Journal of Contemporary Mathematical Analysis, 53:1 (2018), 16–20 , arXiv: 2307.16539
P. S. Gevorgyan, I. Pop, “Movability and Uniform Movability of Shape Morphisms”, Bulletin of the Polish Academy of Sciences. Mathematics, 64 (2016), 69–83
T. A. Avakyan, P. S. Gevorgyan, “Strong movable categories and strong movability of topological spaces”, Journal of Contemporary Mathematical Analysis, 45:1 (2010), 52–29 , arXiv: 2308.06640
P. S. Gevorgyan, I. Pop, “Uniformly Movable Categories and Uniform Movability of Topological Spaces”, Bulletin Polish Acad. Sci. Math., 55 (2007), 229–242 , arXiv: 2308.04425
P. S. Gevorkyan, “Voprosy ekvivariantnoi podvizhnosti $G$-prostranstv”, Vestnik Moskovskogo universiteta. Seriya 1: Matematika. Mekhanika, 2 (2003), 59–63
2002
28.
P. S. Gevorgyan, “Shape Morphisms to Transitive $G$-Spaces”, Math. Notes, 72:6 (2002), 757–762
29.
P. S. Gevorgyan, “On a Movability Criterion”, Math. Notes, 71:2 (2002), 281–284
2001
30.
P. S. Gevorgyan, “Equivariant Freudenthal theorem and equivariant $n$-movability”, Russian Math. Surveys, 56:1 (2001), 156–157
31.
P. S. Gevorgyan, “Algebraic characterization of movable spaces”, Algebra, Geometry and Applications, 1 (2001), 12–18
32.
P. S. Gevorgyan, Movable categories, 2001 , 6 pp., arXiv: math/0105058
33.
P. S. Gevorgyan, Some questions of equivariant movability, 2001 , 12 pp., arXiv: math/0105092
2002
34.
P. S. Gevorgyan, “Remarks on generalized shapes”, J. Contemp. Math. Anal., 36:2 (2002), 83–88
2001
35.
P. S. Gevorgyan, “Equivariant generalization of Freudenthal’s theorem. Equivariant $n$- mobility”, Proceedings of the YSU, Physical and Mathematial Scineces, 2001, no. 2, 137–140
36.
P. S. Gevorgyan, “On equivariant movability of plane invariant compacts”, Proceedings of the YSU, Physical and Mathematial Scineces, 2001, no. 3, 26–30
2000
37.
P. S. Gevorkian, “On movability of topological spaces”, J. Contemp. Math. Anal., 35:3 (2000), 77–81
1996
38.
P. S. Gevorkian, “An equivariant generalization of Arens-Ellis theorem”, Journal of contemporary mathematical analysis, 31 (1996), 70–75
1995
39.
P. S. Gevorgyan, “The majorants in the classes of the wick-eqvivalent $G$-mobile compacts”, Proceedings of the YSU, Physical and Mathematical Sciences, 1995, no. 1, 19–22
1994
40.
P. S. Gevorgyan, “On a peculiarity of $G$-movable compacts”, Proceedings of the YSU, Physical and Mathematical Sciences, 1994, no. 1, 26–31
1989
41.
P. S. Gevorgyan, “Majorants for $G$-movable compacta”, Russian Math. Surveys, 44:1 (1989), 241–242
1988
42.
P. S. Gevorgyan, “On the $G$-movability of $G$-spaces”, Russian Math. Surveys, 43:3 (1988), 203–204
Presentations in Math-Net.Ru
1.
Continuous groups of binary transformations P. S. Gevorgyan International Scientific Conference
“Modern Methods, Problems and Applications of Operator Theory and Harmonic Analysis - 2024”
(OTHA-2024) August 28, 2024 10:00