Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Perel', Maria Vladimirovna

Statistics Math-Net.Ru
Total publications: 8
Scientific articles: 8

Number of views:
This page:722
Abstract pages:2562
Full texts:935
References:241
Candidate of physico-mathematical sciences (1985)
Speciality: 01.04.02 (Theoretical physics)

https://www.mathnet.ru/eng/person34364
List of publications on Google Scholar
https://mathscinet.ams.org/mathscinet/MRAuthorID/305909

Publications in Math-Net.Ru Citations
2024
1. E. A. Gorodnitskiy, M. V. Perel, “On the initial-boundary value problem for the wave equation on a semi-infinite time interval”, Algebra i Analiz, 36:5 (2024),  128–162  mathnet
2019
2. M. V. Perel, “Quasiphotons for the nonstationary 2D Dirac equation”, Zap. Nauchn. Sem. POMI, 483 (2019),  178–188  mathnet
2017
3. E. A. Gorodnitskiy, M. V. Perel, “Justification of the wavelet-based integral representation of a solution of the wave equation”, Zap. Nauchn. Sem. POMI, 461 (2017),  107–123  mathnet; J. Math. Sci. (N. Y.), 238:5 (2019), 630–640 4
2013
4. V. M. Babich, A. M. Budylin, L. A. Dmitrieva, A. I. Komech, S. B. Levin, M. V. Perel', E. A. Rybakina, V. V. Sukhanov, A. A. Fedotov, “On the mathematical work of Vladimir Savel'evich Buslaev”, Algebra i Analiz, 25:2 (2013),  3–36  mathnet  mathscinet  zmath  elib; St. Petersburg Math. J., 25:2 (2014), 151–174  isi  scopus
2002
5. A. P. Kiselev, M. V. Perel', “Relatively Distortion-Free Waves for the $m$-Dimensional Wave Equation”, Differ. Uravn., 38:8 (2002),  1128–1129  mathnet  mathscinet; Differ. Equ., 38:8 (2002), 1206–1207 21
2001
6. M. V. Perel', I. V. Fialkovskii, “Exponentially localized solutions to the Klein–Gordon equation”, Zap. Nauchn. Sem. POMI, 275 (2001),  187–198  mathnet  mathscinet  zmath; J. Math. Sci. (N. Y.), 117:2 (2003), 3994–4000 13
2000
7. M. V. Perel', I. V. Fialkovskii, A. P. Kiselev, “Resonance interaction of bending and shear modes in a non-uniform Timoshenko beam”, Zap. Nauchn. Sem. POMI, 264 (2000),  258–284  mathnet  mathscinet  zmath; J. Math. Sci. (New York), 111:5 (2002), 3775–3790 10
1997
8. A. P. Kiselev, M. V. Perel', “On the nature of “quasiphotons””, Zap. Nauchn. Sem. POMI, 239 (1997),  117–122  mathnet  mathscinet  zmath; J. Math. Sci. (New York), 96:4 (1999), 3355–3358 6

Organisations
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025