|
|
Список публикаций:
|
|
Цитирования (Crossref Cited-By Service + Math-Net.Ru) |
|
|
|
2025 |
| 1. |
И. Ю. Полехин, “Об одном подходе к доказательству существования вынужденных колебаний”, Современная математика и ее приложения: Российско-китайское математическое сотрудничество, Сборник статей, Труды МИАН, 330, МИАН, М., 2025 (в печати) |
| 2. |
Ivan Polekhin, “First steps towards the averaging with respect to a part of the coordinates”, Theor. Appl. Mech., 52:1 (2025), 115–125 |
| 3. |
Ivan Yu. Polekhin, “Metric Geometry and Forced Oscillations in Mechanical Systems”, Regul. Chaotic Dyn., 30:4 (2025), 732–741 |
|
2024 |
| 4. |
И. Ю. Полехин, “Замечания о вынужденных колебаниях на многообразиях”, Математические аспекты механики, Сборник статей. К 60-летию академика Дмитрия Валерьевича Трещева и 70-летию члена-корреспондента РАН Сергея Владимировича Болотина, Труды МИАН, 327, МИАН, М., 2024, 283–290 ; I. Yu. Polekhin, “Remarks on Forced Oscillations on Manifolds”, Proc. Steklov Inst. Math., 327 (2024), 268–275 |
| 5. |
Ivan Yu. Polekhin, “On the dynamics and integrability of the Ziegler pendulum”, Nonlinear Dyn., 112 (2024), 6847–6858 , arXiv: 2209.03724
|
4
[x]
|
|
2023 |
| 6. |
И. Ю. Полехин, “Тополого-аналитический метод доказательства теорем об усреднении на бесконечном интервале времени в вырожденном случае”, Современные методы механики, Сборник статей. К 90-летию академика Андрея Геннадьевича Куликовского, Труды МИАН, 322, МИАН, М., 2023, 195–205 ; Ivan Yu. Polekhin, “A Topological–Analytical Method for Proving Averaging Theorems on an Infinite Time Interval in a Degenerate Case”, Proc. Steklov Inst. Math., 322 (2023), 188–197
|
1
[x]
|
| 7. |
Ivan Yu. Polekhin, “A Note on Forced Oscillations in Systems on a Plane”, Rus. J. Nonlin. Dyn., 19:3 (2023), 383–388
|
1
[x]
|
| 8. |
Ivan Polekhin, “Asymptotically stable non-falling solutions of the Kapitza–Whitney pendulum”, Meccanica, 58 (2023), 1205–1215 , arXiv: 2205.12057
|
2
[x]
|
|
2022 |
| 9. |
И. Ю. Полехин, “О доказательстве существования вынужденных колебаний с помощью \ добавления диссипативных сил на примере сферического маятника”, ТМФ, 211:2 (2022), 295–305 ; I. Yu. Polekhin, “The existence proof for forced oscillations by adding dissipative forces in the example of a spherical pendulum”, Theoret. and Math. Phys., 211:2 (2022), 692–700 |
| 10. |
Ivan Yu. Polekhin, “The Spherical Kapitza – Whitney Pendulum”, Regul. Chaotic Dyn., 27:1 (2022), 65–76
|
6
[x]
|
|
2021 |
| 11. |
Ivan Polekhin, “On the application of the Ważewski method to the problem of global stabilization”, Systems Control Lett., 153 (2021), 104953 , 7 pp., arXiv: 1912.04027
|
1
[x]
|
| 12. |
Valery Kozlov, Ivan Polekhin, “On the non-integrability and dynamics of discrete models of threads”, Nonlinearity, 34:9 (2021), 6398–6416 , arXiv: 2009.09517 |
|
2020 |
| 13. |
И. Ю. Полехин, “Некоторые результаты о вынужденных колебаниях в механических системах”, Избранные вопросы математики и механики, Сборник статей. К 70-летию со дня рождения академика Валерия Васильевича Козлова, Тр. МИАН, 310, МИАН, М., 2020, 267–279 https://arxiv.org/abs/1912.03987 [I. Yu. Polekhin, Избранные вопросы математики и механики, Tr. Mat. Inst. Steklova, 310, Steklov Math. Inst., Moscow, 2020 ]
|
3
[x]
|
| 14. |
Ivan Polekhin, “Remarks on Forced Oscillations in Some Systems with Gyroscopic Forces”, Rus. J. Nonlin. Dyn., 16:2 (2020), 343–353 , arXiv: 1912.04076 |
| 15. |
Ivan Yu. Polekhin, “The Method of Averaging for the Kapitza – Whitney Pendulum”, Regul. Chaotic Dyn., 25:4 (2020), 401–410 , arXiv: 2006.03406
|
7
[x]
|
| 16. |
Ivan Polekhin, “Topological considerations and the method of averaging: A connection between local and global results”, 2020 International Conference Nonlinearity, Information and Robotics, NIR 2020 (3 December 2020 - 6 December 2020), Institute of Electrical and Electronics Engineers Inc., 2020
|
1
[x]
|
|
2019 |
| 17. |
Ivan Yu. Polekhin, “Precession of the Kovalevskaya and Goryachev – Chaplygin Tops”, Regul. Chaotic Dyn., 24:3 (2019), 281–297
|
1
[x]
|
| 18. |
Ivan Polekhin, Averaging method and asymptotic solutions in some mechanical problems, 2019 , 13 pp., arXiv: 1912.04626 |
| 19. |
Ivan Polekhin, “Remarks on the Covering of the Possible Motion Area by Solutions in Rigid Body Systems”, Int. J. Nonlinear Sci. Numer. Simul., 20:3-4 (2019), 293–302 |
|
2018 |
| 20. |
Ivan Polekhin, “On impulsive isoenergetic control in systems with gyroscopic forces”, Int. J. Non-Linear Mech., 100 (2018), 1–5
|
1
[x]
|
| 21. |
Ivan Polekhin, “On topological obstructions to global stabilization of an inverted pendulum”, Systems Control Lett., 113 (2018), 31–35
|
12
[x]
|
| 22. |
I. Yu. Polekhin, “On motions without falling of an inverted pendulum with dry friction”, J. Geometric Mech., 10:4 (2018), 411–417
|
1
[x]
|
| 23. |
И. Ю. Полехин, “О невозможности глобальной стабилизации волчка Лагранжа”, ПММ, 82:5 (2018), 599–604 ; I. Yu. Polekhin, “On the Impossibility of Global Stabilization of the Lagrange Top”, Mechanics of Solids, 53:2 (2018), 71–75
|
2
[x]
|
|
2017 |
| 24. |
Valery Kozlov, Ivan Polekhin, “On the covering of a Hill’s region by solutions in systems with gyroscopic forces”, Nonlinear Anal., 148 (2017), 138–146
|
4
[x]
|
| 25. |
Ivan Yu. Polekhin, “Classical Perturbation Theory and Resonances in Some Rigid Body Systems”, Regul. Chaotic Dyn., 22:2 (2017), 136–147 |
| 26. |
Valery Kozlov, Ivan Polekhin, “On the covering of a Hill's region by solutions in the restricted three-body problem”, Celest. Mech. Dyn. Astr., 127:3 (2017), 331–341
|
3
[x]
|
| 27. |
Ivan Polekhin, “A Topological View on Forced Oscillations and Control of an Inverted Pendulum”, Geometric Science of Information. GSI 2017, Lecture Notes in Comput. Sci., 10589, Springer, Cham, 2017, 329–335
|
1
[x]
|
|
2016 |
| 28. |
Ivan Polekhin, “On forced oscillations in groups of interacting nonlinear systems”, Nonlinear Anal., 135 (2016), 120–128
|
6
[x]
|
|
2015 |
| 29. |
Ivan Polekhin, “Forced oscillations of a massive point on a compact surface with a boundary”, Nonlinear Anal., 128 (2015), 100–105
|
9
[x]
|
|
2014 |
| 30. |
И. Ю. Полехин, “Примеры использования топологических методов в задаче о перевернутом маятнике на подвижном основании”, Нелинейная динам., 10:4 (2014), 465–472
|
11
[x]
|
|
2012 |
| 31. |
И. Ю. Полехин, “О гамильтоновых системах с малыми неавтономными возмущениями”, Вестн. Моск. ун-та. Сер. 1. Матем., мех., 2012, № 1, 47–53 ; I. Yu. Polekhin, “Hamiltonian systems under small nonautonomous perturbations”, Moscow University Mathematics Bulletin, Moscow University Mеchanics Bulletin, 67:1 (2012), 11–17 |
|