|
Список публикаций:
|
|
Цитирования (Crossref Cited-By Service + Math-Net.Ru) |
|
|
2024 |
1. |
Samuel Belliard, Rodrigo Alves Pimenta, Nikita A. Slavnov, “Modified rational six vertex model on the rectangular lattice”, SciPost Phys., 16:1 (2024), 9 , 20 pp., arXiv: 2310.05850 ; |
2. |
N. A. Slavnov, “Algebraic Bethe ansatz approach to the correlation functions of the one-dimensional bosons with attraction”, JHEP, 2024 (2024), 61 , 34 pp., arXiv: 2403.06882 ; |
3. |
Г. Кулкарни, Н. А. Славнов, “Формфакторы локальных операторов в обобщенном алгебраическом анзаце Бете”, ТМФ, 221:2 (2024), 397–418 (в печати) |
|
2023 |
4. |
Г. В. Кулкарни, Н. А. Славнов, “Действие элементов матрицы монодромии в обобщенном алгебраическом анзаце Бете”, ТМФ, 217:3 (2023), 555–576 , arXiv: 2303.02439 ; G. Kulkarni, N. A. Slavnov, “Action of the monodromy matrix elements in the generalized algebraic Bethe ansatz”, Theoret. and Math. Phys., 217:3 (2023), 1889–1906 |
5. |
Г. В. Кулкарни, Н. А. Славнов, “Скалярные произведения векторов Бете в обобщенном алгебраическом анзаце Бете”, ТМФ, 217:1 (2023), 179–203 ; G. Kulkarni, N. A. Slavnov, “Scalar products of Bethe vectors in the generalized algebraic Bethe ansatz”, Theoret. and Math. Phys., 217:1 (2023), 1574–1594 , arXiv: 2306.12932 |
6. |
G. Kulkarni, N. A. Slavnov, Form factor of local operators in the generalized algebraic Bethe ansatz, 2023 , 24 pp., arXiv: 2308.15748 |
|
2022 |
7. |
N.A. Slavnov, Algebraic Bethe Ansatz and Correlation Functions, World Scientific, Singapore, 2022 , 400 pp.
|
9
[x]
|
|
2021 |
8. |
Samuel Belliard, Rodrigo A. Pimenta, Nikita A. Slavnov, “Scalar product for the XXZ spin chain with general integrable boundaries”, J. Phys. A, 54:34 (2021), 344001 , 15 pp., arXiv: 2103.12501 ;
|
4
[x]
|
9. |
С. Беллиард, Н. А. Славнов, “Перекрытие обычных и модифицированных векторов Бете”, ТМФ, 209:1 (2021), 82–100 ; S. Belliard, N. A. Slavnov, “Overlap between usual and modified Bethe vectors”, Theoret. and Math. Phys., 209:1 (2021), 1387–1402
|
2
[x]
|
|
2020 |
10. |
N. Slavnov, A. Zabrodin, A. Zotov, “Scalar products of Bethe vectors in the 8-vertex model”, JHEP, 2020:6 (2020), 123 , 53 pp., arXiv: 2005.11224 ;
|
8
[x]
|
11. |
Н. А. Славнов, “Производящая функция для скалярных произведений в алгебраическом анзаце Бете”, ТМФ, 204:3 (2020), 453–465 ; N. A. Slavnov, Theoret. and Math. Phys., 204:3 (2020), 1216–1226
|
1
[x]
|
12. |
A. Hutsalyuk, A. Liashyk, S. Z. Pakuliak, E. Ragoucy, N. A. Slavnov, “Actions of the monodromy matrix elements onto $\mathfrak{gl}(m|n)$-invariant Bethe vectors”, J. Stat. Mech., 2020, 93104 , 31 pp. ;
|
5
[x]
|
13. |
N. A. Slavnov, “Introduction to the Algebraic Bethe Ansatz”, Geometric Methods in Physics XXXVIII (Białowieza, Poland, 2019), Trends Math., eds. P. Kielanowski, A. Odzijewicz, E. Previato, Birkhäuser, Cham, 2020, 363–371 ; |
14. |
N. A. Slavnov, “Introduction to the nested algebraic Bethe ansatz”, SciPost Phys. Lect. Notes, 19 (2020), 1–53 , arXiv: 1911.12811 ;
|
6
[x]
|
15. |
Современные проблемы математической и теоретической физики, Сборник статей. К 80-летию со дня рождения академика Андрея Алексеевича Славнова, Труды МИАН, 309, ред. А. К. Погребков, Н. А. Славнов, А. А. Белавин, А. В. Зотов, И. В. Тютин, МИАН, М., 2020 , 346 с. |
|
2019 |
16. |
A. Liashyk, S. Z. Pakuliak, E. Ragoucy, N. A. Slavnov, “New symmetries of ${\mathfrak{gl}(N)}$-invariant Bethe vectors”, J. Stat. Mech., 2019 (2019), 044001 , 24 pp., arXiv: 1810.00364
|
8
[x]
|
17. |
А. Н. Ляшик, С. З. Пакуляк, Э. Рагуси, Н. А. Славнов, “Векторы Бете в ортогональных интегрируемых моделях”, ТМФ, 201:2 (2019), 153–174 ; A. N. Liashyk, S. Z. Pakuliak, E. Ragoucy, N. A. Slavnov, “Bethe vectors for orthogonal integrable models”, Theoret. and Math. Phys., 201:2 (2019), 1543–1562 , arXiv: 1906.03202
|
5
[x]
|
18. |
S. Belliard and N. A. Slavnov, “Scalar Products in Twisted XXX Spin Chain. Determinant Representation”, SIGMA, 15 (2019), 066 , 30 pp., arXiv: 1906.06897
|
9
[x]
|
19. |
S. Belliard, N. A. Slavnov, “Why scalar products in the algebraic Bethe ansatz have determinant representation”, JHEP, 2019:10 (2019), 103 , 17 pp., arXiv: 1908.00032
|
20
[x]
|
|
2018 |
20. |
A. Hutsalyuk, A. Liashyk, S.Z. Pakuliak, E. Ragoucy, N.A. Slavnov, “Norm of Bethe vectors in models with $\mathfrak{gl}(m|n)$ symmetry”, Nuclear Phys. B, 926 (2018), 256–278 , arXiv: 1705.09219
|
12
[x]
|
21. |
Arthur Hutsalyuk, Andrii Liashyk, Stanislav Z. Pakuliak, Eric Ragoucy, Nikita A. Slavnov, “Scalar products and norm of Bethe vectors for integrable models based on $U_q(\widehat{\mathfrak{gl}}_n)$”, SciPost Phys., 4 (2018), 6 , 30 pp., arXiv: 1711.03867
|
10
[x]
|
22. |
A. Liashyk, N. A. Slavnov, “On Bethe vectors in $\mathfrak{gl}_3$-invariant integrable models”, Journal of High Energy Physics, 2018, 2018:18 , 31 pp., arXiv: 1803.07628
|
19
[x]
|
23. |
Samuel Belliard, Nikita A. Slavnov, Benoit Vallet, “Modified Algebraic Bethe Ansatz: Twisted XXX Case”, SIGMA, 14 (2018), 54 , 18 pp., arXiv: 1804.00597
|
11
[x]
|
24. |
S. Belliard, N. A. Slavnov, “A note on $\mathfrak{gl}_2$-invariant Bethe vectors”, JHEP, 2018 (2018), 31 , 14 pp., arXiv: 1802.07576
|
4
[x]
|
25. |
S. Belliard, N. A. Slavnov, B. Vallet, “Scalar product of twisted XXX modified Bethe vectors”, J. Stat. Mech., 2018:9 (2018), 93103 , 28 pp., arXiv: 1805.11323
|
5
[x]
|
26. |
Н. А. Славнов, “Детерминантные представления для скалярных произведений в алгебраическом анзаце Бете”, ТМФ, 197:3 (2018), 435–443 ; N. A. Slavnov, “Determinant representations for scalar products in the algebraic Bethe ansatz”, Theoret. and Math. Phys., 197:3 (2018), 1771–1778 |
|
2017 |
27. |
А. А. Гуцалюк, А. Н. Ляшик, С. З. Пакуляк, Э. Рагуси, Н. А. Славнов, “Токовое представление для дубля супер-янгиана $DY(\mathfrak{gl}(m|n))$ и векторы Бете”, УМН, 72:1(433) (2017), 37–106 , arXiv: 1611.09620 ; A. A. Hutsalyuk, A. Liashyk, S. Z. Pakulyak, E. Ragoucy, N. A. Slavnov, “Current presentation for the super-Yangian double $DY(\mathfrak{gl}(m|n))$ and Bethe vectors”, Russian Math. Surveys, 72:1 (2017), 33–99
|
24
[x]
|
28. |
A. A. Hutsalyuk, A. N. Liashyk, S. Z. Pakuliak, E. Ragoucy, N. A. Slavnov, “Scalar products of Bethe vectors in models with $\mathfrak{gl}(2|1)$ symmetry 2. Determinant representation”, J. Phys. A, 50:3 (2017), 34004 , 22 pp., arXiv: 1606.03573
|
17
[x]
|
29. |
Stanislav Z. Pakuliak, Eric Ragoucy, Nikita A. Slavnov, “Bethe vectors for models based on the super-Yangian $Y(gl(m|n))$”, J. Integrab. Syst., 2 (2017), 1–31 , arXiv: 1604.02311
|
11
[x]
|
30. |
J. Fuksa, N. A. Slavnov, “Form factors of local operators in supersymmetric quantum integrable models”, J. Stat. Mech., 2017, 43106 , 21 pp., arXiv: 1701.05866
|
9
[x]
|
31. |
Н. А. Славнов, “Алгебраический анзац Бете”, Лекц. курсы НОЦ, 27, МИАН, М., 2017, 3–189
|
3
[x]
|
32. |
A. Hutsalyuk, A. Liashyk, S.Z. Pakuliak, E. Ragoucy, N.A. Slavnov, “Scalar products of Bethe vectors in the models with $\mathfrak{gl}(m|n)$ symmetry”, Nuclear Phys. B, 923 (2017), 277–311 , arXiv: 1704.08173
|
17
[x]
|
|
2016 |
33. |
Arthur Hutsalyuk, Andrii Liashyk, Stanislav Z. Pakuliak, Eric Ragoucy, Nikita A. Slavnov, “Multiple actions of the monodromy matrix in $\mathfrak{gl}(2|1)$-invariant integrable models”, SIGMA, 12 (2016), 99 , 22 pp., arXiv: 1605.06419
|
14
[x]
|
34. |
A. Hustalyuk, A. Liashyk, S. Z. Pakulyak, E. Ragoucy, N. A. Slavnov, “Form factors of the monodromy matrix entries in gl(2|1)-invariant integrable models”, Nuclear Phys. B, 911 (2016), 902–927 , arXiv: 1607.04978
|
13
[x]
|
35. |
Н. А. Славнов, “Мультикоммутационные соотношения в моделях с $\mathfrak{gl}(2|1)$-симметрией”, ТМФ, 189:2 (2016), 256–278 , arXiv: 1604.05343 ; N. A. Slavnov, “Multiple commutation relations in the models with $\mathfrak gl(2|1)$ symmetry”, Theoret. and Math. Phys., 189:2 (2016), 1624–1644
|
8
[x]
|
36. |
A. Hustalyuk, A. Liashyk, S. Pakulyak, E. Ragoucy, N. Slavnov, “Scalar products of Bethe vectors in models with $\mathfrak{gl}(2|1)$ symmetry. 1. Super-analog of Reshetikhin formula”, J. Phys. A, 49:45 (2016), 454005 , 28 pp., arXiv: 1605.09189
|
12
[x]
|
|
2015 |
37. |
Stanislav Pakuliak, Eric Ragoucy, Nikita A. Slavnov, “${\rm GL}(3)$-Based Quantum Integrable Composite Models. II. Form Factors of Local Operators”, SIGMA, 11 (2015), 064 , 18 pp., arXiv: 1502.01966
|
22
[x]
|
38. |
S. Pakuliak, E. Ragoucy, N. A. Slavnov, “Zero modes method and form factors in quantum integrable models”, Nuclear Phys. B, 893 (2015), 459–481 , arXiv: 1412.6037
|
22
[x]
|
39. |
N. A. Slavnov, “Scalar products in $GL(3)$-based models with trigonometric $R$-matrix. Determinant representation”, J. Stat. Mech. Theory Exp., 2015, no. 03, P03019 , 25 pp., arXiv: 1501.06253
|
18
[x]
|
40. |
Н. А. Славнов, “Одномерный двухкомпонентный Бозе-газ и алгебраический анзац Бете”, ТМФ, 183:3 (2015), 409–433 , arXiv: 1502.06749 ; N. A. Slavnov, “One-dimensional two-component Bose gas and the algebraic Bethe ansatz”, Theoret. and Math. Phys., 183:3 (2015), 800–821
|
8
[x]
|
41. |
Stanislav Pakuliak, Eric Ragoucy, Nikita A. Slavnov, “${\rm GL}(3)$-Based Quantum Integrable Composite Models. I. Bethe Vectors”, SIGMA, 11 (2015), 063 , 20 pp., arXiv: 1501.07566
|
19
[x]
|
42. |
S. Pakuliak, E. Ragoucy, N. A. Slavnov, “Form factors of local operators in a one-dimensional two-component Bose gas”, J. Phys. A, 48:43 (2015), 435001 , 21 pp., arXiv: 1503.00546
|
19
[x]
|
|
2014 |
43. |
S. Pakuliak, E. Ragoucy, N. A. Slavnov, “Bethe vectors of quantum integrable models based on $U_q(\widehat{\mathfrak{gl}}_N)$”, J. Phys. A, 47 (2014), 105202 , 16 pp., arXiv: 1310.3253
|
11
[x]
|
44. |
S. Pakuliak, E. Ragoucy, N. A. Slavnov, “Form factors in quantum integrable models with $GL(3)$-invariant $R$-matrix”, Nucl. Phys. B, 881 (2014), 343–368 , arXiv: 1312.1488
|
27
[x]
|
45. |
С. З. Пакуляк, Е. Рагуси, Н. А. Славнов, “Скалярные произведения в моделях с $GL(3)$ тригонометрической $R$-матрицей. Старший коэффициент”, ТМФ, 178:3 (2014), 363–389 , arXiv: 1311.3500 ; S. Z. Pakuliak, E. Ragoucy, N. A. Slavnov, “Scalar products in models with a $GL(3)$ trigonometric $R$-matrix: Highest coefficient”, Theoret. and Math. Phys., 178:3 (2014), 314–335 , arXiv: 1311.3500
|
10
[x]
|
46. |
С. З. Пакуляк, Э. Рагуси, Н. А. Славнов, “Скалярные произведения в моделях с $GL(3)$ тригонометрической $R$-матрицей. Общий случай”, ТМФ, 180:1 (2014), 51–71 , arXiv: 1401.4355 ; S. Pakuliak, E. Ragoucy, N. A. Slavnov, “Scalar products in models with the $GL(3)$ thigonometric $R$-matrix: general case”, Theoret. and Math. Phys., 180:1 (2014), 795–814 , arXiv: 1401.4355
|
8
[x]
|
47. |
С. З. Пакуляк, Э. Рагуси, Н. А. Славнов, “Детерминантные представления для формфакторов в квантовых интегрируемых моделях с $GL(3)$-инвариантной $R$-матрицей”, ТМФ, 181:3 (2014), 515–537 ; S. Z. Pakuliak, E. Ragoucy, N. A. Slavnov, “Determinant representations for form factors in quantum integrable models with the $GL(3)$-invariant $R$-matrix”, Theoret. and Math. Phys., 181:3 (2014), 1566–1584 , arXiv: 1406.5125
|
16
[x]
|
|
2013 |
48. |
Н. А. Славнов, “Асимптотические разложения для корреляционных функций одномерных бозонов”, ТМФ, 174:1 (2013), 125–139 ; N. A. Slavnov, “Asymptotic expansions for correlation functions of one-dimensional bosons”, Theoret. and Math. Phys., 174:1 (2013), 109–121 |
49. |
S. Belliard, S. Pakuliak, E. Ragoucy, N. A. Slavnov, “Bethe vectors of $GL(3)$-invariant integrable models”, J. Stat. Mech. Theory Exp., 2013, no. 2, P02020 , 24 pp., arXiv: 1210.0768
|
25
[x]
|
50. |
S. Belliard, S. Pakuliak, E. Ragoucy, N. A. Slavnov, “Form factors in $SU(3)$-invariant integrable models”, J. Stat. Mech. Theory Exp., 2013, no. 4, P04033 , 16 pp., arXiv: 1211.3968
|
25
[x]
|
51. |
S. Belliard, S. Pakuliak, E. Ragoucy, N. A. Slavnov, “Bethe Vectors of Quantum Integrable Models with GL(3) Trigonometric R-Matrix”, SIGMA, 9 (2013), 058 , 23 pp., arXiv: 1304.7602
|
16
[x]
|
|
2012 |
52. |
N. Kitanine, K. K. Kozlowski, J. M. Maillet, N. A. Slavnov, V. Terras, “Form factor approach to dynamical correlation functions in critical models”, J. Stat. Mech. Theory Exp., 2012, P09001 , 33 pp., arXiv: 1206.2630
|
82
[x]
|
53. |
S. Belliard, S. Pakuliak, E. Ragoucy, N. A. Slavnov, “Highest coefficient of scalar products in SU(3)-invariant integrable models”, J. Stat. Mech. Theory Exp., 2012, P09003 , 17 pp., arXiv: 1206.4931
|
17
[x]
|
54. |
S. Belliard, S. Pakuliak, E. Ragoucy, N. A. Slavnov, “The algebraic Bethe ansatz for scalar products in SU(3)-invariant integrable models”, J. Stat. Mech. Theory Exp., 2012, P10017 , 25 pp., arXiv: 1207.0956
|
30
[x]
|
55. |
N. A. Slavnov, “Form factor approach to the Calculation of correlation functions of integrable models”, Geometric methods in physics (Bialowieza, Poland, June 24–30, 2012), Trends in Mathematics, eds. P. Kielanowski, S. Twareque Ali, A. Odesskii, A. Odzijewicz, M. Schlichenmaier, T. Voronov, Springer, Basel, 2012, 209–220 |
|
2011 |
56. |
N. Kitanine, K. Kozlowski, J. M. Maillet, N. A. Slavnov, V. Terras, “The thermodynamic limit of particle-hole form factors in the massless $XXZ$ Heisenberg chain”, J. Stat. Mech. Theory Exp., 2011, P05028 , 34 pp.
|
30
[x]
|
57. |
K. Kozlowski, J. M. Maillet, N. A. Slavnov, “Long-distance behavior of temperature correlation functions in the one-dimensional Bose gas”, J. Stat. Mech. Theory Exp., 2011, P03018 , 38 pp.
|
22
[x]
|
58. |
K. Kozlowski, J. M. Maillet, N. A. Slavnov, “Correlation functions of one-dimensional bosons at low temperature”, J. Stat. Mech. Theory Exp., 2011, P03019 , 25 pp.
|
23
[x]
|
59. |
Н. А. Славнов, Введение в теорию квантовых интегрируемых систем. Квантовое нелинейное уравнение Шрëдингера, Лекц. курсы НОЦ, 18, МИАН, М., 2011 , 120 с.
|
1
[x]
|
60. |
N. Kitanine, K. K. Kozlowski, J. M. Maillet, N. A. Slavnov, V. Terras, “A form factor approach to the asymptotic behavior of correlation functions”, J. Stat. Mech. Theory Exp., 2011, P12010 , 28 pp., arXiv: hep-th/1110.0803
|
72
[x]
|
|
2010 |
61. |
Н. А. Славнов, “Интегральные операторы с обобщенным синус-ядром на вещественной оси”, ТМФ, 165:1 (2010), 32–47 ; N. A. Slavnov, “Integral operators with the generalized sine kernel on the real axis”, Theoret. and Math. Phys., 165:1 (2010), 1262–1274
|
9
[x]
|
|
2009 |
62. |
N. Kitanine, K. K. Kozlowski, J. M. Maillet, N. A. Slavnov, V. Terras, “On the thermodynamic limit of form factors in the massless XXZ Heisenberg chain”, J. Math. Phys., 50:9 (2009), 095209 , 24 pp.
|
58
[x]
|
63. |
N. Kitanine, K. Kozlowski, J. M. Maillet, N. A. Slavnov, V. Terras, “Riemann-Hilbert approach to a generalized sine kernel and applications”, Comm. Math. Phys., 291:3 (2009), 691–761
|
39
[x]
|
64. |
N. Kitanine, K. Kozlowski, J. M. Maillet, N. A. Slavnov, V. Terras, “Algebraic Bethe ansatz approach to the asymptotic behavior of correlation functions”, J. Stat. Mech. Theory Exp., 2009, no. 4, P04003 , 66 pp.
|
93
[x]
|
|
2008 |
65. |
N. Kitanine, K. Kozlowski, J. M. Maillet, G. Niccoli, N. A. Slavnov, V. Terras, “Correlation functions of the open $XXZ$ chain. II”, J. Stat. Mech. Theory Exp., 2008, no. 7, P07010 , 33 pp.
|
41
[x]
|
|
2007 |
66. |
N. Kitanine, K. K. Kozlowski, J. M. Maillet, G. Niccoli, N. A. Slavnov, V. Terras, “Correlation functions of the open $XXZ$ chain. I”, J. Stat. Mech. Theory Exp., 2007, no. 10, P10009 , 37 pp.
|
55
[x]
|
67. |
Н. А. Славнов, “Алгебраический анзац Бете и квантовые интегрируемые системы”, УМН, 62:4(376) (2007), 91–132 ; N. A. Slavnov, “The algebraic Bethe ansatz and quantum integrable systems”, Russian Math. Surveys, 62:4 (2007), 727–766
|
50
[x]
|
68. |
Н. А. Славнов, “Корреляционные функции $XXZ$-цепочки Гейзенберга при $\Delta =1/2$”, ТМФ, 150:2 (2007), 304–310 ; N. A. Slavnov, “Correlation functions of the $XXZ$ Heisenberg chain for $\Delta=1/2$”, Theoret. and Math. Phys., 150:2 (2007), 259–265
|
1
[x]
|
69. |
N. Kitanine, K. Kozlowski, J. M. Maillet, N. A. Slavnov, V. Terras, “On correlation functions of integrable models associated to the six-vertex $R$-matrix”, J. Stat. Mech. Theory Exp., 2007, no. 1, P01022 , 17 pp.
|
24
[x]
|
70. |
J.-S. Caux, P. Calabrese, N. A. Slavnov, “One-particle dynamical correlations in the one-dimensional Bose gas”, J. Stat. Mech. Theory Exp., 2007, P01008
|
113
[x]
|
|
2005 |
71. |
N. Kitanine, J. M. Maillet, N. A. Slavnov, V. Terras, “On the algebraic Bethe Ansatz approach to the correlation functions of the $XXZ$ spin-$\frac12$ Heisenberg chain”, Solvable lattice models, RIMS, Kyoto, 2005, 14–48 , arXiv: hep-th/0505006v1 |
72. |
Н. А. Славнов, “О скалярных произведениях в алгебраическом анзаце Бете”, Нелинейная динамика, Сборник статей, Тр. МИАН, 251, Наука, М., 2005, 257–264 ; N. A. Slavnov, “On Scalar Products in the Algebraic Bethe Ansatz”, Proc. Steklov Inst. Math., 251 (2005), 246–253 |
73. |
N. Kitanine, J. M. Maillet, N. A. Slavnov, V. Terras, “Master equation for spin-spin correlation functions of the $XXZ$ chain”, Nuclear Phys. B, 712:3 (2005), 600–622
|
73
[x]
|
74. |
N. Kitanine, J. M. Maillet, N. A. Slavnov, V. Terras, “Dynamical correlation functions of the $XXZ$ spin-$1/2$ chain”, Nuclear Phys. B, 729:3 (2005), 558–580
|
47
[x]
|
75. |
N. Kitanine, J. M. Maillet, N. A. Slavnov, V. Terras, “On the spin-spin correlation functions of the $XXZ$ spin-$\frac12$ infinite chain”, J. Phys. A, 38:34 (2005), 7441–7460
|
16
[x]
|
76. |
N. Kitanine, J. M. Maillet, N. A. Slavnov, V. Terras, “Exact results for the $\sigma^2$ two-point function of the $XXZ$ chain at $\Delta=1/2$”, J. Stat. Mech. Theory Exp., 2005, no. 9, L09002 , 7 pp.
|
8
[x]
|
|
2004 |
77. |
N. Kitanine, J. M. Maillet, N. A. Slavnov, V. Terras, “Correlation functions of the $XXZ$ spin-$\frac12$ Heisenberg chain: recent advances”, Proceedings of 6th International Workshop on Conformal Field Theory and Integrable Models, Internat. J. Modern Phys. A, 19, no. May, suppl., 2004, 248–266
|
4
[x]
|
78. |
Н. А. Славнов, “Вероятность образования пустоты в $XXZ$-цепочке Гейзенберга спина 1/2”, ТМФ, 139:1 (2004), 96–103 ; N. A. Slavnov, “Emptiness Formation Probability in the Spin-1/2 $XXZ$ Heisenberg Chain”, Theoret. and Math. Phys., 139:1 (2004), 529–535 |
|
2003 |
79. |
Н. А. Славнов, “Интегральные представления для корреляционных функций $XXZ$-цепочки Гейзенберга”, ТМФ, 135:3 (2003), 452–461 ; N. A. Slavnov, “Integral Representations for Correlation Functions of the $XXZ$ Heisenberg Chain”, Theoret. and Math. Phys., 135:3 (2003), 828–835 |
|
2002 |
80. |
N. A. Slavnov, “The partition function of the six-vertex model as a Fredholm determinant”, Isomonodromic deformations and applications in physics (Montréal, QC, 2000), CRM Proc. Lecture Notes, 31, Amer. Math. Soc., Providence, RI, 2002, 207–218 |
81. |
N. Kitanine, J. M. Maillet, N. A. Slavnov, V. Terras, “Spin-spin correlation functions of the $XXZ$-$\frac12$ Heisenberg chain in a magnetic field”, Nuclear Phys. B, 641 (2002), 487–518
|
124
[x]
|
82. |
N. Kitanine, J. M. Maillet, N. A. Slavnov, V. Terras, “Correlation functions of the $XXZ$ spin-$\frac12$ Heisenberg chain at the free fermion point from their multiple integral representations”, Nuclear Phys. B, 642:3 (2002), 433–455
|
45
[x]
|
83. |
N. Kitanine, J. M. Maillet, N. A. Slavnov, V. Terras, “Emptiness formation probability of the $XXZ$ spin-$\frac12$ Heisenberg chain at $\Delta=\frac12$”, J. Phys. A, 35:27 (2002), L385–L388
|
53
[x]
|
84. |
N. Kitanine, J. M. Maillet, N.A. Slavnov, V. Terras, “Large distance asymptotic behavior of the emptiness formation probability of the $XXZ$ spin-$\frac12$ Heisenberg chain”, J. Phys. A, 35:49 (2002), L753–L758
|
53
[x]
|
|
2001 |
85. |
N. Kitanine A., N. A. Slavnov, “The algebraic Bethe ansatz and the correlation functions of the Heisenberg magnet”, Integrable structures of exactly solvable two-dimensional models of quantum field theory (Kiev, 2000), NATO Sci. Ser. II Math. Phys. Chem., 35, Kluwer Acad. Publ., Dordrecht, 2001, 243–264 |
|
2000 |
86. |
V. Korepin, N. Slavnov, “Quantum inverse scattering method and correlation functions”, L. D. Faddeev's Seminar on Mathematical Physics, Amer. Math. Soc. Transl. Ser. 2, 201, Amer. Math. Soc., Providence, RI, 2000, 115–121 |
87. |
N. A. Slavnov, “A nonlinear identity for the scattering phase of integrable models”, Proceedings of the Workshop on Nonlinearity, Integrability and All That: Twenty Years after NEEDS '79 (Gallipoli, 1999), eds. M. Boiti et al., World Sci. Publ., River Edge, NJ, 2000, 196–202 |
88. |
Н. А. Славнов, “Фредгольмов детерминант для статистической суммы шестивершинной модели”, Вопросы квантовой теории поля и статистической физики. 16, Зап. научн. сем. ПОМИ, 269, ПОМИ, СПб., 2000, 308–321 ; N. A. Slavnov, “Fredholm determinant representation for the partition function of the six-vertex model”, J. Math. Sci. (N. Y.), 115:1 (2003), 2058–2065
|
7
[x]
|
89. |
H. Frahm, N. A. Slavnov, “Magnetic properties of doped Heisenberg chains”, Nuclear Phys. B, 575:3 (2000), 485–503
|
1
[x]
|
|
1999 |
90. |
V. E. Korepin, N. A. Slavnov, “A closed expression for quantum correlation functions of exactly solvable models of quantum field theory”, Path integrals from peV to TeV (Florence, 1998), World Sci. Publ., River Edge, NJ, 1999, 71–79 |
91. |
V. E. Korepin, N. A. Slavnov, “Form factors in the finite volume” (Torino, 1998), Internat. J. Modern Phys. B, Proceedings of the Euroconference on New Symmetries in Statistical Mechanics and Condensed Matter Physics, 13, no. 24-25, 1999, 2933–2941
|
27
[x]
|
92. |
V. Korepin, N. Slavnov, “Thermodynamics of quantum nonlinear Schrödinger equation”, XIIth International Congress of Mathematical Physics (ICMP '97) (Brisbane), Int. Press, Cambridge, MA, 1999, 345–349 |
93. |
В. Е. Корепин, Н. А. Славнов, “Формфакторы в конечном объеме”, Математическая физика. Проблемы квантовой теории поля, Сборник статей. К 65-летию со дня рождения академика Людвига Дмитриевича Фаддеева, Тр. МИАН, 226, Наука, М., 1999, 82–96 ; V. E. Korepin, N. A. Slavnov, “The Form Factors in a Finite Volume”, Proc. Steklov Inst. Math., 226 (1999), 72–85 |
94. |
Н. А. Славнов, “Интегральные уравнения для корреляционных функций квантового одномерного бозе-газа”, ТМФ, 121:1 (1999), 117–138 ; N. A. Slavnov, “Integral equations for correlation functions of a quantum one-dimensional Bose gas”, Theoret. and Math. Phys., 121:1 (1999), 1358–1376
|
10
[x]
|
95. |
А. Р. Итс, Н. А. Славнов, “О методе задачи Римана для асимптотического анализа корреляционных функций квантового нелинейного уравнения Шредингера. Случай взаимодействующих фермионов”, ТМФ, 119:2 (1999), 179–248 ; A. R. Its, N. A. Slavnov, “On the Riemann–Hilbert approach to asymptotic analysis of the correlation functions of the quantum nonlinear Schrödinger equation: Interacting fermion case”, Theoret. and Math. Phys., 119:2 (1999), 541–593
|
14
[x]
|
96. |
H. Frahm, N. A. Slavnov, “New solutions to the reflection equation and the projecting method”, J. Phys. A, 32:9 (1999), 1547–1555
|
36
[x]
|
|
1998 |
97. |
V. E. Korepin, N. A. Slavnov, “The determinant representation for quantum correlation functions of the sinh-Gordon model”, J. Phys. A, 31:46 (1998), 9283–9295
|
8
[x]
|
98. |
Н. А. Славнов, “Нелинейное тождество для фазы рассеяния в интегрируемых моделях”, ТМФ, 116:3 (1998), 362–366 ; N. A. Slavnov, “A nonlinear identity for the scattering phase of integrable models”, Theoret. and Math. Phys., 116:3 (1998), 1021–1023
|
6
[x]
|
99. |
N. A. Slavnov, “Asymptotics of the Fredholm determinant associated with the correlation functions of the quantum nNonlinear Schrödinger equation”, Вопросы квантовой теории поля и статистической физики. 15, Зап. научн. сем. ПОМИ, 251, ПОМИ, СПб., 1998, 80–93 ; N. A. Slavnov, “Asymptotics of the Fredholm determinant associated with the correlation functions of the quantum nNonlinear Schrödinger equation”, J. Math. Sci. (New York), 104:3 (2001), 1135–1143
|
2
[x]
|
100. |
V. Korepin, N. Slavnov, “The new identity for the scattering matrix of exactly solvable models”, Eur. Phys. J. B Condens. Matter Phys., 5:3 (1998), 555–557
|
16
[x]
|
|
1997 |
101. |
Н. А. Славнов, “Об одном тождестве для дуальных полей”, Вопросы квантовой теории поля и статистической физики. 14, Зап. научн. сем. ПОМИ, 245, ПОМИ, СПб., 1997, 270–281 ; N. A. Slavnov, “On an identity for dual fields”, J. Math. Sci. (New York), 100:2 (2000), 2181–2188
|
19
[x]
|
102. |
T. Kojima, V. E. Korepin, N. A. Slavnov, “Determinant representation for dynamical correlation function of the quantum Nonlinear Schrödinger equation”, Comm. Math. Phys., 188:3 (1997), 657–689
|
72
[x]
|
103. |
T. Kojima, V. E. Korepin, N. A. Slavnov, “Completely integrable equation for the quantum correlation function of nonlinear Schrödinger equation”, Comm. Math. Phys., 189:3 (1997), 709–728
|
15
[x]
|
104. |
V. E. Korepin, N. A. Slavnov, “Normal ordering in the theory of correlation functions of exactly solvable models”, J. Phys. A, 30:24 (1997), 8623–8633
|
5
[x]
|
105. |
V. E. Korepin, N. A. Slavnov, “The Riemann–Hilbert problem associated with the quantum nonlinear Schrödinger equation”, J. Phys. A, 30:23 (1997), 8241–8255
|
8
[x]
|
106. |
V. E. Korepin, N. A. Slavnov, “Time and temperature dependent correlation functions of 1D models of quantum statistical mechanics”, Phys. Lett. A, 236:3 (1997), 201–205
|
11
[x]
|
|
1996 |
107. |
Н. А. Славнов, “Фредгольмовы детерминанты и $\tau$-функции”, ТМФ, 109:3 (1996), 357–371 ; N. A. Slavnov, “Fredholm determinants and $\tau$-functions”, Theoret. and Math. Phys., 109:3 (1996), 1523–1535
|
3
[x]
|
108. |
Н. А. Славнов, “Сокращение дуальных полей в свободнофермионных моделях с тригонометрической $R$-матрицей”, ТМФ, 108:2 (1996), 179–192 ; N. A. Slavnov, “Cancellation of dual fields in free fermion models with trigonometric $R$-matrix”, Theoret. and Math. Phys., 108:2 (1996), 993–1002
|
4
[x]
|
109. |
Н. А. Славнов, “Дифференциальные уравнения для многоточечных корреляционных функций в одномерном непроницаемом бозе-газе”, ТМФ, 106:1 (1996), 160–174 ; N. A. Slavnov, “Differential equations for multipoint correlation functions in one-dimensional impenetrable bose-gas”, Theoret. and Math. Phys., 106:1 (1996), 131–142
|
8
[x]
|
|
1995 |
110. |
А. Г. Изергин, Н. А. Китанин, Н. А. Славнов, “О корреляционных функциях XY-модели”, Вопросы квантовой теории поля и статистической физики. 13, Зап. научн. сем. ПОМИ, 224, ПОМИ, СПб., 1995, 178–191 ; A. G. Izergin, N. A. Kitanin, N. A. Slavnov, “On correlation functions of the $XY$ model”, J. Math. Sci. (New York), 88:2 (1998), 224–232
|
7
[x]
|
|
1994 |
111. |
А. Г. Изергин, А. Р. Итс, В. Е. Корепин, Н. А. Славнов, “Матричная задана Римана–Гильберта и дифференциальные уравнения для корреляционных функций $XXO$ цепочки Гейзенберга”, Алгебра и анализ, 6:2 (1994), 138–151 ; A. G. Izergin, A. R. Its, V. E. Korepin, N. A. Slavnov, “The matrix Riemann–Hilbert problem and differential equations for correlation functions of the $XXO$ Heisenberg chain”, St. Petersburg Math. J., 6:2 (1995), 315–326
|
7
[x]
|
|
1993 |
112. |
Its A. R., Izergin A. G., Korepin V. E., N. A. Slavnov, “The quantum correlation function as the $\tau$ function of classical differential equations”, Important developments in soliton theory, Springer Ser. Nonlinear Dynam., Springer, Berlin, 1993, 407–417
|
7
[x]
|
113. |
А. Г. Изергин, А. Р. Итс, В. Е. Корепин, Н. А. Славнов, “Интегрируемые дифференциальные уравнения для температурных корреляционных функций XXO цепочки Гейзенберга”, Дифференциальная геометрия, группы Ли и механика. 13, Зап. научн. сем. ПОМИ, 205, Наука, СПб., 1993, 6–20 ; A. G. Izergin, A. R. Its, V. E. Korepin, N. A. Slavnov, “Integrable differential equations for temperature correlation functions of the Heisenberg $XXO$ chain”, J. Math. Sci., 80:3 (1996), 1747–1759
|
4
[x]
|
114. |
A. R. Its, A. G. Izergin, V. E. Korepin, N. A. Slavnov, “Temperature correlations of quantum spins”, Phys.l Rev. Lett., 70:11 (1993), 1704–1706
|
93
[x]
|
|
1991 |
115. |
V. E. Korepin, N. A. Slavnov, “Correlation functions of fields in One-dimensional Bose-gas”, Comm. Math. Phys., 136:3 (1991), 633–644
|
20
[x]
|
|
1990 |
116. |
Bogoliubov N. M., Korepin V. E., N. A. Slavnov, “Time-temperature correlation functions of densities of one-dimensional Bose gas”, Solitons and applications (Dubna, 1989), World Sci. Publ., River Edge, NJ, 1990, 159–169 |
117. |
Н. А. Славнов, “Разновременной коррелятор токов в одномерном бозе-газе”, ТМФ, 82:3 (1990), 389–401 ; N. A. Slavnov, “Nonequal-time current correlation function in a one-dimensional Bose gas”, Theoret. and Math. Phys., 82:3 (1990), 273–282
|
96
[x]
|
118. |
V. E. Korepin, N. A. Slavnov, “Time dependence correlation function of an impenetrable Bose-gas as a Fredholm minor. I”, Comm. Math. Phys., 129:1 (1990), 103–113
|
60
[x]
|
119. |
A. R. Its, A. G. Izergin, V. E. Korepin, N. A. Slavnov, “Differential equations for quantum correlation function”, Internat. J. Modern Phys. B, 4:5 (1990), 1003–1037
|
233
[x]
|
120. |
V. E. Korepin, N. A. Slavnov, “Time dependence of the density-density temperature correlation function of one-dimensional Bose-gas”, Nuclear Phys. B, 340:2-3 (1990), 759–766
|
4
[x]
|
|
1989 |
121. |
Н. А. Славнов, “Вычисление скалярных произведений волновых функций и формфакторов в рамках алгебраического анзаца Бете”, ТМФ, 79:2 (1989), 232–240 ; N. A. Slavnov, “Calculation of scalar products of wave functions and form factors in the framework of the algebraic Bethe ansatz”, Theoret. and Math. Phys., 79:2 (1989), 502–508
|
288
[x]
|
|
1987 |
122. |
А. Г. Изергин, В. Е. Корепин, Н. А. Славнов, “Температурные корреляционные функции антиферромагнетика Гейзенберга”, ТМФ, 72:2 (1987), 277–285 ; A. G. Izergin, V. E. Korepin, N. A. Slavnov, “Finite-temperature correlation functions of Heisenberg antiferromagnet”, Theoret. and Math. Phys., 72:2 (1987), 878–884
|
6
[x]
|
|
1986 |
123. |
В. Е. Корепин, Н. А. Славнов, “Корреляционная функция токов в одномерном бозе-газе”, ТМФ, 68:3 (1986), 471–478 ; V. E. Korepin, N. A. Slavnov, “Correlation function of currents in a one-dimensional Bose gas”, Theoret. and Math. Phys., 68:3 (1986), 955–960
|
7
[x]
|
|