Персоналии
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
 
Воронцов Юрий Олегович

E-mail:

https://www.mathnet.ru/rus/person62389
Список публикаций на Google Scholar

Публикации в базе данных Math-Net.Ru Цитирования
2018
1. Х. Д. Икрамов, Ю. О. Воронцов, “Численное решение дискретного BHH-уравнения в нормальном случае”, Сиб. журн. вычисл. матем., 21:4 (2018),  367–373  mathnet  elib; Kh. D. Ikramov, Yu. O. Vorontsov, “Numerical solution of the discrete BHH-equation in the normal case”, Num. Anal. Appl., 11:4 (2018), 293–297  isi  scopus 1
2015
2. Ю. О. Воронцов, “Об условиях разрешимости матричного уравнения $X^{\mathrm{T}}DX+AX+X^{\mathrm{T}}B+C=0$”, Ж. вычисл. матем. и матем. физ., 55:4 (2015),  555–557  mathnet  mathscinet  zmath  elib; Yu. O. Vorontsov, “Solvability conditions for the matrix equation $X^{\mathrm{T}}DX+AX+X^{\mathrm{T}}B+C=0$”, Comput. Math. Math. Phys., 55:4 (2015), 546–548  isi  elib  scopus 3
2014
3. Ю. О. Воронцов, Х. Д. Икрамов, “Алгоритм численного решения одного класса квадратичных матричных уравнений”, Ж. вычисл. матем. и матем. физ., 54:11 (2014),  1707–1710  mathnet  mathscinet  elib; Yu. O. Vorontsov, Kh. D. Ikramov, “Numerical algorithm for solving quadratic matrix equations of a certain class”, Comput. Math. Math. Phys., 54:11 (2014), 1643–1646  isi  elib  scopus 1
4. Ю. О. Воронцов, Х. Д. Икрамов, “Алгоритм численного решения одного класса полуторалинейных матричных уравнений”, Ж. вычисл. матем. и матем. физ., 54:6 (2014),  901–904  mathnet  mathscinet  elib; Yu. O. Vorontsov, Kh. D. Ikramov, “Numerical algorithm for solving sesquilinear matrix equations of a certain class”, Comput. Math. Math. Phys., 54:6 (2014), 915–918  isi  elib  scopus 1
5. Ю. О. Воронцов, Х. Д. Икрамов, “Численное решение матричных уравнений типа Стейна в самосопряженном случае”, Ж. вычисл. матем. и матем. физ., 54:5 (2014),  723–727  mathnet  mathscinet  elib; Yu. O. Vorontsov, Kh. D. Ikramov, “Numerical solution of matrix equations of the Stein type in the self-adjoint case”, Comput. Math. Math. Phys., 54:5 (2014), 745–749  isi  elib  scopus
6. Ю. О. Воронцов, Х. Д. Икрамов, “Численное решение матричного уравнения $X-A\overline{X}B=C$ в самосопряженном случае”, Ж. вычисл. матем. и матем. физ., 54:3 (2014),  371–374  mathnet  elib; Yu. O. Vorontsov, Kh. D. Ikramov, “Numerical solution of the matrix equation $X-A\overline{X}B=C$ in the self-adjoint case”, Comput. Math. Math. Phys., 54:3 (2014), 379–381  isi  elib  scopus
7. Ю. О. Воронцов, Х. Д. Икрамов, “Численное решение матричных уравнений $AX+X^TB=C$ и $AX+X^*B=C$ в самосопряженном случае”, Ж. вычисл. матем. и матем. физ., 54:2 (2014),  179–182  mathnet  elib; Yu. O. Vorontsov, Khakim D. Ikramov, “Numerical solution of the matrix equations $AX+X^TB=C$ and $AX+X^*B=C$ in the self-adjoint case”, Comput. Math. Math. Phys., 54:2 (2014), 191–194  isi  elib  scopus 3
2013
8. Ю. О. Воронцов, “Модификация численного алгоритма для решения матричного уравнения $X+AX^{\mathrm{T}}B=C$”, Ж. вычисл. матем. и матем. физ., 53:6 (2013),  853–856  mathnet  mathscinet  elib; Yu. O. Vorontsov, “Modifying a numerical algorithm for solving the matrix equation $X+AX^TB=C$”, Comput. Math. Math. Phys., 53:6 (2013), 677–680  isi  elib  scopus 3
9. Ю. О. Воронцов, Х. Д. Икрамов, “Численные алгоритмы для решения матричных уравнений $AX+BX^{\mathrm T}=C$ и $AX+BX^*=C$”, Ж. вычисл. матем. и матем. физ., 53:6 (2013),  843–852  mathnet  mathscinet  elib; Yu. O. Vorontsov, Khakim D. Ikramov, “Numerical algorithms for solving matrix equations $AX+BX^T=C$ and $AX+BX^*=C$”, Comput. Math. Math. Phys., 53:6 (2013), 667–676  isi  elib  scopus 3
10. Ю. О. Воронцов, Х. Д. Икрамов, “Численное решение матричных уравнений вида $X+AX^{\mathrm{T}}B=C$”, Ж. вычисл. матем. и матем. физ., 53:3 (2013),  331–335  mathnet  mathscinet  zmath  elib; Yu. O. Vorontsov, Khakim D. Ikramov, “Numerical solution of matrix equations of the form $X+AX^{\mathrm T}B=C$”, Comput. Math. Math. Phys., 53:3 (2013), 253–257  isi  elib  scopus 3
2012
11. Ю. О. Воронцов, Х. Д. Икрамов, “О численном решении матричных уравнений $AX+X^TB+C$ и $X+AX^TB+C$ с прямоугольными коэффициентами $A$ и $B$”, Зап. научн. сем. ПОМИ, 405 (2012),  54–58  mathnet  mathscinet; Y. O. Vorontsov, Kh. D. Ikramov, “Numerical solution of the matrix equations $AX+X^TB=C$ and $X+AX^TB=C$ with rectangular coefficients”, J. Math. Sci. (N. Y.), 191:1 (2013), 28–30  scopus 2
12. Ю. О. Воронцов, Х. Д. Икрамов, “Об условиях однозначной разрешимости матричного уравнения $AX+X^\ast B=C$”, Ж. вычисл. матем. и матем. физ., 52:5 (2012),  775–783  mathnet  mathscinet  elib; Yu. O. Vorontsov, Kh. D. Ikramov, “Conditions for unique solvability of the matrix equation $AX+X^\ast B=C$”, Comput. Math. Math. Phys., 52:5 (2012), 665–673  isi  elib  scopus 6
2011
13. Ю. О. Воронцов, Х. Д. Икрамов, “Численный алгоритм для решения матричного уравнения $AX+X^\mathrm TB=C$”, Ж. вычисл. матем. и матем. физ., 51:5 (2011),  739–747  mathnet  mathscinet; Yu. O. Vorontsov, Kh. D. Ikramov, “A numerical algorithm for solving the matrix equation $AX+X^\mathrm TB=C$”, Comput. Math. Math. Phys., 51:5 (2011), 691–698  isi  scopus 12
2010
14. Х. Д. Икрамов, Ю. О. Воронцов, “О коммутативных алгебрах $(T+H)$-матриц”, Ж. вычисл. матем. и матем. физ., 50:5 (2010),  805–816  mathnet; Kh. D. Ikramov, Yu. O. Vorontsov, “On commutative algebras of Toeplitz-plus-Hankel matrices”, Comput. Math. Math. Phys., 50:5 (2010), 766–777  isi  scopus

Организации