2. Lobachevskii Journal of Mathematics (Editorial Board from 2024); Q2 (Scopus, WoS)
3. Complex Variables & Elliptic Equations; Q2 (Scopus, WoS); Guest Editor (2024 - 2026): Special Issue Dedicated to the Memory of S. N. Mergelyan on the Occasion of His 95th Birthday Anniversary:
"Complex Analysis and Differential Equations of Mathematical Physics: Theory and Applications".
8. International Journal of Mathematical Physics (Editorial Board from 2018);
9. Journal of Advances in Mathematics (Editorial Board from 2019);
10. Прикладная математика и математическая физика (Зам. Гл. Редактора с 2015; Гл. Редактор с 2019 );
11. American Journal of Mathematics and Statistics (Editorial Board from 2011); http://journal.sapub.org/ajms
Основные публикации:
Hovik A. Matevossian, “Asymptotics and Uniqueness of Solutions of the Elasticity System with the Mixed Dirichlet–Robin Boundary Conditions”, MDPI Mathematics, 8:12 (2020), 32 pp.
Hovik A. Matevossian, “On the polyharmonic Neumann problem in weighted spaces”, Complex Variables & Elliptic Equations, 64:1 (2019), 1–7
H. A. Matevossian, “On the Steklov–type biharmonic problem in unbounded domains”, Russ. J. Math. Phys., 25:2 (2018), 271–276
О. А. Матевосян, “О решениях смешанных краевых задач для системы теории упругости в неограниченных областях”, Изв. РАН. Сер. матем., 67:5 (2003), 49–82
О. А. Матевосян, “О решениях внешних краевых задач для системы теории упругости в весовых пространствах”, Матем. сборник, 192:12 (2001), 25–60
Hovik A. Matevossian, “Biharmonic Steklov problem in half-space”, Complex Variables & Elliptic Equations, 71 (2026), 1–11 (Published online: May 2025)
2.
G. A. Barsegian, H. A. Matevossian, “A new principle for real functions of two variables”, Lobachevskii J. Math., 47:2 (2026), 1–6 (in press)
3.
Heinrich Begehr, Paul M. Gauthier, Hovik A. Matevossian, “A genius in mathematics ahead of his time: Sergei N. Mergelyan”, Complex Variables & Elliptic Equations, 71 (2026), 1–45 (Published online: December 2025)
4.
H. A. Matevossian, A. M. Ishkhanyan, “Asymptotic Behavior of Solutions of the Cauchy Problem for a Hyperbolic Equation with Periodic Coefficients. The Principle of the Limiting Amplitude”, Evolution Equations & Control Theory, 16 (2026), 1–28 (to appear)
2025
5.
Hovik A. Matevossian, “On the generalized Farwig problem for a polyharmonic equation”, Complex Variables & Elliptic Equations, 70:7 (2025), 1153–1160 (Published online: July 2024)
A. M. Ishkhanyan, H. A. Matevossian, V. Yu. Smirnov, “On the Behavior of Solutions of the Mixed Problem for a Hyperbolic Equation with Periodic Coefficients on the Semi-Axis”, Lobachevskii J. Math., 46:6 (2025), 2804–2815
7.
Hovik A. Matevossian, “Farwig Problem for the Biharmonic Equation in a Half-Space”, Lobachevskii J. Math., 46:6 (2025), 2909–2916
8.
Hovik A. Matevossian, “Steklov-type Biharmonic Problem in the Half-Space”, MDPI Mathematics, 13:23 (2025), xxx (to appear) , 10 pp.
2024
9.
Hovik A. Matevossian, ““Differential Equations of Mathematical Physics and Related Problems of Mechanics” – Editorial 2021—2023”, MDPI Mathematics, 12:1 (2024), 150 , 5 pp.
10.
М. В. Коровина, О. А. Матевосян, И. Н. Смирнов, “Асимптотики решений уравнения 3-го порядка в окрестности иррегулярной особой точки”, Владикавказ. матем. журн., 26:1 (2024), 106–122; M. V. Korovina, H. A. Matevossian, I. N. Smirnov, “Asymptotics of Solutions to a Third-Order Equation in a Neighborhood of an Irregular Singular Point”, Siberian Math. J., 65:4 (2024), 921–933
11.
Giovanni Migliaccio, Hovik A. Matevossian, “Solution of the Biharmonic Problem with the Steklov-type and Farwig Boundary Conditions”, Lobachevskii J. Math., 45:5 (2024), 2363–2377
12.
S. N. Mergelyan, H. A. Matevossian, “Editorial: S. N. Mergelyan’s Dissertation “Best Approximations in the Complex Domain” (Short Version)”, MDPI Mathematics, 12:7 (2024), 939 , 16 pp.
S. N. Mergelyan, H. A. Matevossian, “Correction: Mergelyan, S.N.; Matevossian, H.A. Editorial: S. N. Mergelyan’s Dissertation “Best Approximations in the Complex Domain” (Short Version). Mathematics, 2024, 12:7, 939”, MDPI Mathematics, 12:13 (2024), 1952 , 1 pp.
14.
Hovik A. Matevossian, “Steklov Biharmonic Problem with Weighted Dirichlet Integral”, Lobachevskii J. Math., 45:8 (2024), 3629–3645
Artur M. Ishkhanyan, Hovik A. Matevossian, “On the Behavior of Solutions of the Cauchy Problem for a Hyperbolic Equation with Periodic Coefficients. The Principle of the Limiting Amplitude”, Lobachevskii J. Math., 45:8 (2024), 3548–3558
Giorgio Nordo, Hovik A. Matevossian, “On Soft and Neutrosophic Sets”, Lobachevskii J. Math., 45:8 (2024), 3716–3726
17.
Hovik A. Matevossian, “On Soft and Neutrosophic Sets”, (Invited Speaker for the Plenary talk; 25.09.2024), MeCoNeT 2024: Mediterranean Conference on Neutrosophic Theory (Messina, 24–25 September, 2024), eds. G. Nordo, F. Smarandache, Accademia Peloritana dei Pericolanti, Messina, Italy, 2024, 12 pages
18.
J. Johnsy, M. Jeyaraman, S. Jafari, H. A. Matevossian, “Enhanced Blood Pressure Monitoring via Neutrosophic Metric Spaces”, Lobachevskii J. Math., 45:12 (2024), 6483–6496
19.
Hovik A. Matevossian, “The Robin problem for second order elliptic equation, periodic by part of independent variables, in exterior domains”, Book of Abstract. S3IC 2024: Single–Molecule Sensors and NanoSystems International Conference (Paris, October 28–30, 2024), PremC; ISSN 2678–3002, Chimie Paris Tech – PSL, Paris, 2024, xii, 118https://premc.org/S3IC
20.
Hovik A. Matevossian, “Biharmonic problem with Steklov-type conditions on the boundary of the domain”, Lobachevskii J. Math., 45:12 (2024), 6552–6568
21.
S. M. Mkhitaryan, H. A. Matevossian, E. G. Kanetsyan, M. S. Mkrtchyan, “Hypersingular Integral Equations Encountered in Problems of Mechanics”, MDPI Mathematics, 12:22 (2024), 3620 , 19 pp.
22.
S. R. Vidhya, N. Rajesh, S. Jafari, G. Nordo, H. A. Matevossian, “Possibility $q$-rung Interval Valued Fuzzy Soft Set and their Real-life Application to Decision-making Approach”, Lobachevskii J. Math., 45:12 (2024), 6633–6647
2023
23.
Maria V. Korovina, Hovik A. Matevossian, Ilya N. Smirnov, “Uniform Asymptotics of Solutions of the Wave Operator with Meromorphic Coefficients”, Applicable Analysis, 102:1 (2023), 239–252
Maria Korovina, Hovik Matevossian, Ilya Smirnov, Vladimir Smirnov, Nikita Kudashov, “Asymptotics of Solutions of a Boundary Value Problem for the Hyperbolic Equation”, In: Networked Control Systems for Connected and Automated Vehicles, Vol. 1, Chapt. 63, ISBN: 978-3-031-11057-3, Lecture Notes in Networks and Systems (LNNS, NN 2022), 509, eds. A. Guda, Springer, Cham, 2023, 633–642
25.
М. В. Коровина, О. А. Матевосян, “О равномерных асимптотиках решений дифференциальных уравнений второго порядка с мероморфными коэффициентами в окрестности особых точек”, Сиб. электрон. матем. изв., 20:1 (2023), 251–261
26.
Hovik A. Matevossian, Vladimir Yu. Smirnov, “Behavior as $t\to\infty$ of Solutions of a Mixed Problem for a Hyperbolic Equation with Periodic Coefficients on the Semi-Axis”, MDPI Symmetry, 15:3 (2023), 777 , 22 pp.
Hovik A. Matevossian, Giorgio Nordo, “Asymptotic Behavior of Solutions of the Initial Boundary Value Problem for a Hyperbolic Equation with Periodic Coefficients on the Semi-Axis”, Lobachevskii J. Math., 44:6 (2023), 2398–2412
Francesco dell’Isola, Hovik A. Matevossian, “Foundations of Continuum Mechanics and Mathematical Physics – Editorial 2021–2023”, MDPI Symmetry, 15:9 (2023), 1643 , 6 pp.
30.
Hovik A. Matevossian, Francesco dell’Isola, “Computational Mathematics and Mathematical Physics – Editorial I (2021–2023)”, MDPI Axioms, 12:9 (2023), 824 , 6 pp.
31.
H. A. Matevossian, V. N. Bobylev, “Uniqueness and Existence of Solutions of the Cauchy Problem for a Hyperbolic Equation with Periodic Coefficients”, In Book: Mathematical physics, dynamical systems, infinite-dimensional analysis example. Abstracts of III International Conference dedicated to the $100^{th}$ anniversary of V. S. Vladimirov, the $100^{th}$ anniversary of L. D. Kudryavtsev and the $85^{th}$ anniversary of O. G. Smolyanov. (MPDSIDA-2023: Section 1 “Mathematical Physics”; Moscow Region, Dolgoprudny, July 5–13, 2023), MESOL LLC, Moscow, 2023, 142–143
32.
H. A. Matevossian, V. Yu. Smirnov, “Behavior at Infinity of Solutions of a Mixed Problem for a Hyperbolic Equation with Periodic Coefficients on the Semi-Axis”, In Book: Mathematical physics, dynamical systems, infinite-dimensional analysis example. Abstracts of III International Conference dedicated to the $100^{th}$ anniversary of V. S. Vladimirov, the $100^{th}$ anniversary of L. D. Kudryavtsev and the $85^{th}$ anniversary of O. G. Smolyanov. (MPDSIDA-2023: Section 1 “Mathematical Physics”; Moscow Region, Dolgoprudny, July 5–13, 2023), MESOL LLC, Moscow, 2023, 144–146
33.
Hovik A. Matevossian, “On some Polyharmonic Problems in Weighted Spaces”, IC “XIV Annual International Meeting of the Georgian Mechanical Union”, dedicated to the $55^{th}$ Anniversary of I. Vekua Institute of Applied Mathematics of I. Javakhishvili Tbilisi State University & the $90^{th}$ Anniversary of Akaki Tsereteli State University (Georgia, Poti, August 29–31, 2023), ISSN 2233–355X, Akaki Tsereteli State University & Batumi State Maritime Academy, 2023, 107–108
34.
Hovik A. Matevossian, “On Solutions of the Navier Problem for a Polyharmonic Equation in Unbounded Domains”, Russ. J. Math. Phys., 30:4 (2023), 713–716
Hovik A. Matevossian, “Steklov–Neumann Biharmonic Problem in Weighted Spaces”, Lobachevskii J. Math., 44:12 (2023), 5341–5354
36.
S. A. Lurie, P. A. Belov, H. A. Matevossian, “Symmetry Properties of Models for Reversible and Irreversible Thermodynamic Processes”, MDPI Symmetry, 15:12 (2023), 2173 , 22 pp.
M. V. Korovina, H. A. Matevossian, I. N. Smirnov, “On the Asymptotics of Solutions of a Boundary Value Problem for the Hyperbolic Equation at $t\to\infty$.”, Lobachevskii J. Math., 42:15 (2022 / 2021), 3684–3695
Maria V. Korovina, Hovik A. Matevossian, “Uniform Asymptotics of Solutions of Second-Order Differential Equations with Meromorphic Coefficients in a Neighborhood of Singular Points and Their Applications”, MDPI Mathematics, 10:14 (2022), 2465 , 21 pp.
Hovik A. Matevossian, Giorgio Nordo, “Homogenization of the Semi-linear Parabolic Problem in a Perforated Cylinder”, Lobachevskii J. Math., 43:7 (2022), 1934–1944
Hovik A. Matevossian, Maria V. Korovina, Vladimir A. Vestyak, “Asymptotic Behavior of Solutions of the Cauchy Problem for a Hyperbolic Equation with Periodic Coefficients (Case: H_0 > 0)”, MDPI Mathematics, 10:16 (2022), 2963 , 26 pp.
Hovik A. Matevossian, Maria V. Korovina, Vladimir A. Vestyak, “Asymptotic Behavior of Solutions of the Cauchy Problem for a Hyperbolic Equation with Periodic Coefficients II”, MDPI Axioms, 11:9 (2022), 473 , 13 pp.
Giovanni Migliaccio, Hovik A. Matevossian, “Mixed Biharmonic Problem with the Steklov-type and Neumann Boundary Conditions in Unbounded Domains”, Lobachevskii J. Math., 43:11 (2022), 3222–3238
Hovik A. Matevossian, “Boundary Value Problems for Elliptic Operators in Weighted Spaces”, ICONSOM 2022: International Conference of Nonlinear Solid Mechanic (Alghero, Sardinia, Italy, June 13-16, 2022), eds. Francesco dell’Isola & Marco Amabili, M&MoCS, 2022, 7www.memocsevents.eu/iconsom2022/
44.
Hovik A. Matevossian, “Asymptotic Behavior of the Solution to the Cauchy Problem for a Hyperbolic Equation with Periodic Coefficients. Principle of Limiting Amplitude.”, FAATNA20>22: International Conference “Functional Analysis, Approximation Theory and Numerical Analysis” (Matera, Italy, July 5-8, 2022), Matera, 2022, 5 (to appear) web.unibas.it/faatna22/
2021
45.
Maria V. Korovina, Hovik A. Matevossian, Ilya N. Smirnov, “On the Asymptotics of Solutions of the Wave Operator with Meromorphic Coefficients”, Proceedings of 1st International Conference on Structural Damage Modelling and Assessment (SDMA20), Chapter 14, Lecture Notes in Civil Engineering (LNCE), 110, eds. Abdel Wahab M., Springer, Singapore, 2021, 177-189
М. В. Коровина, О. А Матевосян, И. Н. Смирнов, “Об асимптотике решений волнового оператора с мероморфными коэффициентами”, Матем. заметки, 109:2 (2021), 312–317; M. V. Korovina, O. A. Matevosyan, I. N. Smirnov, “On the Asymptotic of Solutions of the Wave Operator with Meromorphic Coefficients”, Math. Notes, 109:2 (2021), 312–316
О. А. Матевосян, “Бигармоническая задача с граничными условиями Дирихле и типа Стеклова в весовых пространствах”, Ж. вычисл. матем. и матем. физ., 61:6 (2021), 951–965; H. A. Matevossian, “Biharmonic problem with Dirichlet and Steklov-type boundary conditions in weighted spaces”, Comput. Math. & Math. Phys., 61:6 (2021), 938–952
О. А. Матевосян, “Задача Дирихле–Неймана для бигармонического уравнения во внешних областях”, Дифференц. уравнения, 57:8 (2021), 1049–1062; H. A. Matevossian, “Dirichlet–Neumann Problem for the Biharmonic Equation in Exterior Domains”, Differ. Equations, 57:8 (2021), 1020–1033
M V. Korovina, H. A. Matevossian, I. N. Smirnov, V. Yu. Smirnov, “On the Asymptotics of Solutions of the Klein - Gordon - Fock Equation with Meromorphic Coefficients in the Neighborhood of Infinity” (Bauman Moscow State Technical University, Moscow, November 20, 2020), J. Phys.: Conf. Ser., 1990:1 (2021), 012017 , 6 pp.
Giovanni Migliaccio, Hovik A. Matevossian, “Exterior biharmonic problem with the mixed Steklov and Steklov-type boundary conditions”, Lobachevskii J. Math., 42:8 (2021), 1886–1899
H. A. Matevossian, M. U. Nikabadze, G. Nordo, A. R. Ulukhanyan, “Biharmonic Navier and Neumann problems and their application in mechanical engineering”, Lobachevskii J. Math., 42:8 (2021), 1876–1885
Hovik A. Matevossian, Giorgio Nordo, Giovanni Migliaccio, “Biharmonic Problems and their Applications in Engineering and Technology”, CHAOS 2020: 13th Chaotic Modeling and Simulation International Conference, Chapter 42, Springer Proceedings in Complexity, Springer, Cham, 2021, 575–596
Hovik A. Matevossian, Giovanni Migliaccio, “On the Exterior Biharmonic Problem with the Steklov and Steklov-type Boundary Conditions”, CHAOS2020: 13th Chaotic Modeling and Simulation International Conference, Chapter 43, Springer Proceedings in Complexity, Springer, Cham, 2021, 597–607
Hovik Matevossian, Giorgio Nordo, Giovanni Migliaccio, “Biharmonic Problems and their Applications in Engineering and Technology”, CHAOS 2020: Book of Abstracts of the 13th Chaotic Modeling and Simulation International Conference (Italy, Florence, 9–12 June, 2020; Virtual Conference), ISAST: International Society for the Advancement of Science and Technology, Via Maso Finiguerra, 9, Firenze FI 50123, Italy, 2020, 86 (Published online) www.cmsim.org/chaos2020.html; www.cmsim.org/images/Book_of_Abstracts_CHAOS_2020-.pdf
56.
Hovik Matevossian, Giovanni Migliaccio, “On the Exterior Biharmonic Problem with the Steklov and Steklov-type Boundary Conditions”, CHAOS 2020: Book of Abstracts of the 13th Chaotic Modeling and Simulation International Conference (Italy, Florence, 9–12 June, 2020; Virtual Conference), ISAST: International Society for the Advancement of Science and Technology, Via Maso Finiguerra, 9, Firenze FI 50123, Italy, 2020, 85–86 (Published online) www.cmsim.org/chaos2020.html; www.cmsim.org/images/Book_of_Abstracts_CHAOS_2020-.pdf
57.
Hovik A. Matevossian (with Maria V. Korovina, Ilya N. Smirnov), “On the Asymptotics of Solutions of the Wave Operator with Meromorphic Coefficients”, SDMA 2020: 1st International Conference on Structural Damage Modelling and Assessment (Belgium, Ghent, August 4–5, 2020, Online conference), Ghent University, Belgium, 2020, 10 pp. (Published online) www.sdmaconf.org/index.html
58.
H. A. Matevossian, G. Nordo, A. V. Vestyak, “Behavior of Solutions of the Cauchy Problem and the Mixed Initial Boundary Value Problem for an Inhomogeneous Hyperbolic Equation with Periodic Coefficients”, In: Developments and Novel Approaches in Nonlinear Solid Body Mechanics, Chapter 4, Advanced Structured Materials, 130, Springer, Cham, 2020, 29–35
Hovik A. Matevossian, “On the Exterior Dirichlet–Neumann Problem for the Biharmonic Equation and its Application in Mechanics”, TransSiberia 2020: VIII International Scientific Conference Transport of Siberia – 2020 (Novosibirsk, May 22–27, 2020), IOP Conf. Ser.: Materials Science & Engineering, 918, no. 1, 2020, 012099 , 7 pp.
60.
H. A. Matevossian, G. Nordo, T. Sako, “Biharmonic Problems and their Application in Engineering and Medicine”, II International Conference on Composites “Advances in Composite Science and Technology (ACST 2019)” (Bauman Moscow State Technical University, Moscow, November 20–21, 2019), IOP Conf. Ser.: Materials Science & Engineering, 934, no. 1, 2020, 012065 , 10 pp.
Hovik A. Matevossian, “Asymptotics and Uniqueness of Solutions of the Elasticity System with the Mixed Dirichlet–Robin Boundary Conditions”, MDPI Mathematics, 8:12 (2020), 2241 , 32 pp.
Hovik Matevossian, “On the mixed Dirichlet–Farwig biharmonic problem in exterior domains”, J. Adv. Math., 16 (2019), 8322–8329
67.
Hovik A. Matevossian (with Mikhail U. Nikabadze, Sergey A. Lurie, Armine R. Ulukhanyan), “On Determination of Wave Velocities through the Eigenvalues of Material Objects”, Math. Comput. Appl., 24:2, 39 (2019), 1–17 (Special Issue "Mathematical Modeling in Physical Sciences)
Hovik A. Matevossian, “Mixed Boundary Value Problems for the Elasticity System in Exterior Domains”, Math. Comput. Appl., 24:2, 58 (2019), 1–7 (Special Issue "Related Problems of Continuum Mechanics)
H. Matevossian (with M. Nikabadze, S. Lurie, A. Ulukhanyan), “On the Problem of Eigenvalues of Material Tensor Objects and Wave Velocities”, Lobachevskii J. Math., 40:7 (2019), 992–1009
H. Matevossian (with M. Nikabadze, A. Ulukhanyan), “On the Problem of Eigenvalues of Material Properties Tensors and Velocities of Wave Propagation in the Structures”, Joint MEMOCS Workshop on Models of Complex Materials and Systems (Arpino, Italy, June 20–23, 2019), Organized by CNRS Federation of Paris Mechanics Labs & International Research Center M&MoCS, University of L’Aquila, M&MoCS, 2019, 15 p. (Published online) www.memocsevents.eu/wordpress/cossevita/joint-memocs-workshop/
72.
Hovik A. Matevossian, “On the Dirichlet and the Mixed Dirichlet-Neumann Problems in Exterior Domains”, GJESR: Global J. Engineering Science & Researches, 6:3 (2019), 190–197
73.
H. A. Matevossian, M. U. Nikabadze, A. R. Ulukhanyan, “Biharmonic Problems and their Applications”, GJESR: Global J. Engineering Science & Researches, 6:3 (2019), 263–272
74.
Hovik Matevossian, Mikhail Nikabadze, Armine Ulukhanyan, “Biharmonic Problems and their Applications”, Abstracts: X Annual International Meeting of the Georgian Mechanical Union, Section: Related Problems of Analysis, (Telavi, Georgia, September 26–28, 2019), Iakob Gogebashvili Telavi State University, Telavi, 2019, 8 pages
75.
Hovik Matevossian, Tokuei Sako, “Mixed Biharmonic Problems in Exterior Domains”, Материалы I Международной конференции “Математическое моделирование в материаловедении электронных компонентов”. МММЭК-2019 (Москва, 21–23 октября 2019 г.), ISBN 978-5-317-06245-3, МАКС Пресс, Москва, 2019, с. 94, 168 стр.
О. А. Матевосян, “Бигармоническая задача Дирихле–Фарвига во внешних областях”, Сиб. электрон. матем. известия, 16 (2019), 1716–1731
77.
H. A. Matevossian, G. Nordo, T. Sako, “Biharmonic Problems and their Application in Engineering and Medicine”, II Международный форум по композитам "Ключевые тренды в композитах: Наука и технологии ", Секция 8. Моделирование в науке о композитах; (МГТУ им. Н. Э. Баумана, Москва, 20–21 ноября 2019 г.), МГТУ им. Н. Э. Баумана, Москва, 2019, 12–13forum.emtc.ru/
78.
Hovik Matevossian, Giorgio Nordo, Tokuei Sako, “Some Biharmonic Problems and their Application in Technology and Medicine”, Book of Abstracts: International Scientific Workshop "Related Problems of Continuum Mechanics, Section "Related problems of Analysis, (Kutaisi, Georgia, October 31– November 1, 2019), ISBN 978-9941-484-85-8, Akaki Tsereteli State University, Kutaisi, Georgia, 2019, p. 20
79.
Hovik Matevossian, Giorgio Nordo, “Homogenization of Semilinear Elliptic and Parabolic Operators in Perforated Domains”, Book of Abstracts: International Scientific Workshop "Related Problems of Continuum Mechanics, Section "Related problems of Analysis, (Kutaisi, Georgia, October 31– November 1, 2019), ISBN 978-9941-484-85-8, Akaki Tsereteli State University, 2019, p. 19
80.
Hovik Matevossian (with Mikhail Nikabadze, Armine Ulukhanian), “The Problem of Eigenvalues of Material Properties Tensor Objects and Velocities of Wave Propagation in the Structures”, Book of Abstracts: International Scientific Workshop "Related Problems of Continuum Mechanics, Section "Related problems of Analysis (Kutaisi, Georgia, October 31– November 1, 2019), ISBN 978-9941-484-85-8, Akaki Tsereteli State University, Kutaisi, Georgia, 2019, p. 21
81.
Hovik Matevossian, “On the Mixed Steklov–Neumann and Steklov-Type Biharmonic Problems in Unbounded Domains”, I International Conference on Composites “Advances in Composite Science and Technologies” (Moscow, December 5–8, 2018), IOP Conf. Ser.: Mater. Sci. Eng., 683, no. 1, 2019, 012016 , 10 pp.
О. А. Матевосян, А. В. Вестяк, О. Н. Пещерикова, “О поведении решений начально-краевых задач для гиперболического уравнения с периодическими коэффициентами”, Мамем. заметки, 104:5 (2018), 785–789; H. A. Matevossian, A. V. Vestyak, O. N. Peshcherikova, “On the behavior of solutions of the initial boundary value problems for the hyperbolic equation with periodic coefficients”, Math. Notes, 104:5 (2018), 762–766
Hovik Matevossian, Mikhail Nikabadze, Armine Ulukhanyan, “Determination of velocities of wave propagation in some media through the eigenvalues of the material tensors”, International Conference on Mathematical Modelling in Physical Sciences, IOP Conf. Series: Journal of Physics: Conf. Series, 1141, no. 1, 2018, 012154 , 14 pp.
Hovik Matevossian (with Mikhail Nikabadze, Armine Ulukhanyan), “Some Biharmonic Problems and their Applications”, Proceedings of the International Scientific Conference "Related Problems of Continuum Mechanics. (Kutaisi, Georgia, October 12–13, 2018), ISBN 978-9941-484-11-7, eds. M. Nikabadze, H. Matevossian, Akaki Tsereteli State University, Kutaisi, Georgia, 2018, 184–193
87.
H. Matevossian (with S. Lurie, M. Nikabadze, A. Ulukhanyan), “The Problems of Eigenvalues of Material Tensor Objectives and Velocities of Wave Propagaition”, Proceedings of the International Scientific Conference “Related Problems of Continuum Mechanics” (Kutaisi, Georgia, October 12–13, 2018), ISBN 978-9941-484-11-7, eds. M. Nikabadze, H. Matevossian, Akaki Tsereteli State University, Kutaisi, Georgia, 2018, 40–56
88.
Hovik Matevossian, “Elliptic Boundary Value Problems in Weighted Spaces”, (Plenary talk; 11.10.2018), IX Annual International Meeting of the Georgian Mechanical Union (Tbilisi–Kutaisi, 11–13 October, 2018), Akaki Tsereteli State University, 2018, 10 pages
89.
Hovik Matevossian, “On the Mixed Steklov–Neumann and Steklov-Type Biharmonic Problems in Unbounded Domains”, I Международная конференция по композитам “Advance in Composite Science and Technologies”, Секция 8. Моделирование в науке о композитах; (МГТУ им. Н. Э. Баумана, Москва, 5–8 декабря 2018 г.), МГТУ им. Н. Э. Баумана, Москва, 2018, 9 c.labkm.bmstu.ru/?p=822; conf.emtc.ru
Hovik Matevossian, “Biharmonic Problems in Weighted Spaces”, (Plenary talk), 7th IC-MSQUARE 2018: International Conference on Mathematical Modelling in Physical Sciences (Russian Academy of Sciences & Lomonosov Moscow State University, Moscow, 27–31, 2018), Lomonosov Moscow State University, 2018, 10 pp.www.mathnet.ru/php/conference.phtml?confid=1399&option_lang=eng
2017
92.
Hovik A. Matevossian, “On solutions of the mixed Dirichlet–Steklov problem for the biharmonic equation in exterior domains”, P-Adic Numbers, Ultrametric Analysis & Appl., 9:2 (2017), 151–157
О. А. Матевосян, “О задаче Дирихле–Робена для системы теории упругости”, Доклады НАН Армении, 117:2 (2017), 139–144elib.sci.am/2017_2/06_2_2017.pdf; O. A. Matevosyan, “On the Dirichlet-Robin problem for a system in elasticity theory”, Dokl. Nats. Akad. Nauk Armen. / Reports Nat. Acad. Sci. Armenia, 117:2 (2017), 139–144
94.
H. A. Matevossian, “On the biharmonic Steklov problem in weighted spaces”, Russ. J. Math. Physics, 24:1 (2017), 134–138
А. В. Вестяк, О. А. Матевосян, “О поведении решения задачи Коши для неоднородного гиперболического уравнения с периодическими коэффициентами”, Матем. заметки, 102:3 (2017), 470–474; A. V. Vestyak, H. A. Matevossian, “On the behavior of the solution of the Cauchy problem for an inhomogeneous hyperbolic equation with periodic coefficients”, Math. Notes, 102:3 (2017), 424–428
Hovik Matevossian, Mikhail Nikabadze, Armine Ulukhanian, “On solutions of biharmonic problems”, Mathematical and Numerical Aspects of Dynamical Systems Analysis, DSTA 2017 Abstracts: 14th International Conference on "Dynamical Systems — Theory and Applications (Lodz, Poland, December 11–14, 2017), ISBN 978-83-935312-6-4, eds. J. Awrejcewicz, et al., DAB&M and TUL Press, Lodz, 2017, 369–380www.dys-ta.com; www.dys-ta.com/special_issues
97.
Hovik A. Matevossian, Anatoly V. Vestyak, “Behavior of the solution of the Cauchy problem for an inhomogeneous hyperbolic equation with periodic coefficients”, IOP Conf. Series: Journal of Physics: Conf. Series, 936:1, 6th IC-MSQUARE (2017), 012097 , 5 pp.
Hovik A. Matevossian, Anatoly V. Vestyak, “Behavior of the solution of the Cauchy problem for an inhomogeneous hyperbolic equation with periodic coefficients”, 6th IC-MSQUARE: Abstract Book “International Conference on Mathematical Modelling in Physical Sciences” (Cyprus, Pafos, August 28–31, 2017), University of Paphos, 2017, 5 pp.
99.
Hovik Matevossian, Mikhail Nikabadze, Armine Ulukhanyan, “Determination of velocities of wave propagation in some media through the eigenvalues of the material tensors”, 6th IC-MSQUARE: Abstract Book “International Conference on Mathematical Modelling in Physical Sciences” (Cyprus, Pafos, August 28–31, 2017), University of Paphos, 2017, 10 pp.
2016
100.
О. А. Матевосян, “О решениях одной краевой задачи для бигармонического уравнения”, Дифференц. уравнения, 52:10 (2016), 1431–1435; O. A. Matevosyan, “On solutions of one boundary value problem for the biharmonic equation”, Differ. Equations, 52:10 (2016), 1379–1383
O. A. Matevosyan, “On solutions of the mixed Dirichlet–Navier problem for the polyharmonic equation in exterior domains”, Russ. J. Math. Phys., 23:1 (2016), 135–138
О. А. Матевосян, “Смешанная задача Дирихле–Стеклова для бигармонического уравнения в весовых пространствах”, Труды сем. им. И. Г. Петровского, 31, Изд-во Моск. ун-та, М., (2016), 87–109; O. A. Matevosyan, “Mixed Dirichlet–Steklov problem for the biharmonic equation in weighted spaces”, J. Math. Sci. (N. Y.), 234:4 (2018), 440–454
А. В. Вестяк, О. А. Матевосян, “О поведении решения задачи Коши для гиперболического уравнения с периодическими коэффициентами”, Матем. заметки, 100:5 (2016), 766–769; A. V. Vestyak, O. A. Matevosyan, “On the behavior of the solution of the Cauchy problem for a hyperbolic equation with periodic coefficients”, Math. Notes, 100:5 (2016), 751–754
H. A. Matevossian, “On solutions of the Dirichlet problem for the polyharmonic equation in unbounded domains”, P-Adic Numbers, Ultrametric Analysis & Appl., 7:1 (2015), 71–75
О. А. Матевосян, “Решение смешанной краевой задачи для бигармонического уравнения с конечным весовым интегралом Дирихле”, Дифференц. уравнения, 51:4 (2015), 481–494; O. A. Matevosyan, “Solution of a mixed boundary value problem for the biharmonic equation with finite weighted Dirichlet integral”, Differ. Equations, 51:4 (2015), 487–501
О. А. Матевосян, “О решениях смешанной краевой задачи для бигармонического уравнения во внешних областях”, Прикл. математика и матем. физика, 1:1 (2015), 151–160
107.
О. А. Матевосян, “Задача Стеклова для бигармонического уравнения в неограниченных областях”, Международная конференция «Функциональные пространства и теория приближения функций», посвященная 110-летию со дня рождения академика С. М. Никольского. Тезисы докладов (Москва, МИАН, 25–29 мая 2015 г.), ISBN 978-5-98419-059-6, МИАН, М., 2015, 181;www.mathnet.ru/php/conference.phtml?&eventID=1&confid=620&option_lang=rus; # 60
108.
О. А. Матевосян, “О решениях задачи Неймана для бигармонического уравнения в неограниченных областях”, Матем. заметки, 98:6 (2015), 944–947; O. A. Matevossian, “On solutions of the Neumann problem for the biharmonic equation in unbounded domains”, Math. Notes, 98:6 (2015), 990–994
O. A. Matevosyan, “On solutions of a boundary value problem for a polyharmonic equation in unbounded domains”, Russ. J. Math. Phys., 21:1 (2014), 130–132
Hovik Matevosyan, “On solutions of elliptic boundary value problems in weighted spaces”, Abstract No. PP-10-1843, ICM 2014; Proceedings of the International Congress of Mathematicians, Section: 10. Partial Differential Equations; (Coex, Seoul, Korea, August 13–21, 2014), KYUNG MOON SA Co. Ltd, Seoul, 2014, 1843;http://www.icm2014.org/
111.
O. A. Matevosyan, “Solutions of the Robin problem for the system of elastic theory in external domains”, J. Math. Sci. (N. Y.), 197:3 (2014), 367–394
О. А. Матевосян, “Решение задачи Робена для системы теории упругости во внешних областях”, Труды сем. им. И. Г. Петровского, 29, Изд-во Моск. ун-та, М., 2013, 346–389; O. A. Matevosyan, “Solutions of the Robin problem for the system of elastic theory in external domains”, J. Math. Sci. (N. Y.), 197:3 (2014), 367–394
О. А. Матевосян, “Задача Дирихле для полигармонического уравнения в неограниченных областях”, Международная конференция “Дифференциальные уравнения. Функциональные пространства. Теория приближений”, посвященная 105-летию со дня рождения С. Л. Соболева, Тезисы докладов. Секция 1 “Дифференциальные уравнения”, с.192. (Новосибирск, 18–24 августа 2013 г.), ISBN 978-5-86134-139-4, Институт математики им. С. Л. Соболева СО РАН, Новосибирск, 2013, 465 c.
114.
О. А. Матевосян, “О решениях бигармонического уравнения и системы уравнений Стокса в областях с некомпактной границей”, Крымская Международная Математическая Конференция (КММК–2013). Сборник тезисов, Секция 6: Дифференциальные уравнения в частных производных. (Судак, Украина, 22 сентября – 4 октября 2013 г.), Т. 2, КНЦ НАНУ, ТНУ им. В. И. Вернадского, Симферополь, 2013, 48
115.
Е. М. Лепшин, О. А. Матевосян, “О решениях полигармонического уравнения в бесконечных областях”, Крымская Международная Математическая Конференция (КММК–2013). Сборник тезисов, Секция 6: Дифференциальные уравнения в частных производных. (Судак, Украина, 22 сентября – 4 октября 2013 г.), Т. 2, КНЦ НАНУ, ТНУ им. В. И. Вернадского, Симферополь, 2013, 44–45
2011
116.
О. А. Матевосян, “О решениях эллитических краевых задач в областях с негладкой границей”, Международная конференция “Дифференциальные уравнения и смежные воросы”, посвященная 110-ой годовщине И. Г. Петровского, (XXIII совместное заседание ММО и семинара И. Г. Петровского), Тезисы докладов, с.269. (Москва, 30 мая - 4 июня 2011 г.), ISBN 978-5-9556-0122-9, Изд-во Моск. ун-та, Москва, 2011, 424 c.
2009
117.
Hovik A. Matevossian, “Elliptic Boundary Value Problems in Domains with Nonsmooth and Noncompact boundaries”, CHAOS 2009: 2nd Chaotic Modeling and Simulation International Conference, Book of Abstracts (Chania, Crete, Greece, June 1 - 5, 2009), Crete, 2009, pp.www.chaos2009.net/
2006
118.
Hovik A. Matevossian, “Elliptic Operators in Domains with Conical Points”, ICM2006: Proceedings of the International Congress of Mathematicians, Madrid, Spain, August 22-30, 2006 (Madrid, Spain, August 22-30, 2006), Madrid, 2006, pp.www.icm2006.org/
2005
119.
О. А. Матевосян, И. В. Филимонова, “Об усреднении слабо-нелинейных параболических операторов в перфорированном цилиндре”, Изв. вузов. Матем., 2005, № 9, 29–37; O. A. Matevosyan, I. V. Filimonova, “On the averaging of weakly nonlinear parabolic operators in a perforated cylinder”, Russian Math. (Iz. VUZ), 49:9 (2005), 27–35
О. А. Матевосян, И. В. Филимонова, “Об усреднении полулинейных параболических операторов в перфорированном цилиндре”, Матем. заметки, 78:3 (2005), 396–408; O. A. Matevosyan, I. V. Filimonova, “Homogenization of semilinear parabolic operators in a perforated cylinder”, Math. Notes, 78:3 (2005), 364–374
О. А. Матевосян, “О решениях смешанных краевых задач для системы теории упругости в неограниченных областях”, Изв. РАН. Сер. матем., 67:5 (2003), 49–82; H. A. Matevossian, “On solutions of mixed boundary-value problems for the elasticity system in unbounded domains”, Izvestiya Math., 67:5 (2003), 895–929
О. А. Матевосян, “О единственности решений задачи Робена для системы теории упругости в полупространстве”, УМН, 58:4(352) (2003), 151–152; O. A. Matevosyan, “Uniqueness of solution of the Robin problem for systems in the theory of elasticity in a half-space”, Russ. Math. Surveys, 58:4 (2003), 791–793
О. А. Матевосян, “Критерий единственности решений задачи Робена для системы теории упругости во внешних областях”, УМН, 58:2(350) (2003), 169–170; O. A. Matevosyan, “A uniqueness criterion for solutions of the Robin problem for a system in elasticity theory in exterior domains”, Russ. Math. Surveys, 58:2 (2003), 384–385
Hovik A. Matevossian, I. V Filimonova, “On the homogenization of semilinear parabolic operators in a perforated cylinder”, WHAPDE 2003: Workshop on Harmonic Analysis and Partial Differential Equations (Puerto Vallarta, Mexico, June 23–27, 2003), Universidad Nacional Autonoma de Mexico, Puerto Vallarta, 2003, pp.http://www.matem.unam.mx/whapde/; http://www.matem.unam.mx/
125.
Hovik A. Matevossian, “On elliptic operators in weighted spaces”, ICMP 2003: XIV International Congress on Mathematical Physics (July 28 – August 2, 2003, University of Lisbon, Portugal), University of Lisbon, Lisbon, 2003, pp.
2002
126.
О. А. Матевосян, С. В. Пикулин, “Об усреднении полулинейных эллиптических операторов в перфорированных областях”, Матем. сб., 193:3 (2002), 101–114; O. A. Matevossian, S. V. Pikulin, “On the homogenization of semilinear elliptic operators in perforated domains”, Sb. Math., 193:3 (2002), 409–422
Hovik A. Matevossian, “Eliptic Operators in Domains with Nonsmooth Boundary”, Congrès de Mathématiques Appliquées à la mémoire de Jacques-Louis Lions (Paris, Collège de France, 1–5 Juillet, 2002), Collège de France, Paris, 2002, pp.http://acm.emath.fr/congres-jllions/
2001
128.
О. А. Матевосян, “О решениях внешней задачи Дирихле для бигармонического уравнения с конечным весовым интегралом Дирихле”, Матем. заметки, 70:3 (2001), 403–418; O. A. Matevosyan, “The exterior Dirichlet problem for the biharmonic equation: solutions with bounded Dirichlet integral”, Math. Notes, 70:3 (2001), 363–377
О. А. Матевосян, “О решениях внешних краевых задач для системы теории упругости в весовых пространствах”, Матем. сб., 192:12 (2001), 25–60; O. A. Matevossian, “Solutions of exterior boundary-value problems for the elasticity system in weighted spaces”, Sb. Math., 192:12 (2001), 1763–1798
О. А. Матевосян, С. В. Пикулин, “Об усреднении слабонелинейных дивергентных эллиптических операторов в перфорированном кубе”, Матем. заметки, 68:3 (2000), 390–398; H. A. Matevossian, S. V. Pikouline, “On the homogenization of weakly nonlinear divergent operators in a perforated cube”, Math. Notes, 68:3 (2000), 337–344
Hovik A. Matevossian, “On solutions of boundary value problems for the system of elasticity theory in conical domains”, Section 9: Partial Differential Equations; Poster (ref. no. 506), 3ecm BARCELONA 2000; 3rd European Congress of Mathemaics, Abstracts Book (Barcelona, Spain, July 10–14, 2000), Barcelona, 2000, pp.http://www.iec.es/3ecm/; http://www.si.ups.es/3ecm/
132.
Hovik A. Matevossian, “Elliptic differential operators and new spectral invariants on the simplectic manifolds”, I Colloquium on Lie Theory and Applications (CLIETA), Abstracts Book (Vigo, Spain, July 17–22, 2000), Universidade de Vigo, Vigo, 2000, 5 pp.
133.
Hovik A. Matevossian, “The uniqueness theorems of solutions of boundary value problems for second order elliptic equations, periodic by part of independent variables, in exterior domains”, (Talk No.1096, July 25), The Third World Congress of Nonlinear Analysts (WCNA-2000) (Catania, Sicily, Italy, July 19–26, 2000), Nonlinear Analysis, Elsevier, 2000, 44
134.
Hovik A. Matevossian, “On the asymptotic and uniqueness of solutions of the boundary value problems for second order elliptic and parabolic equations, periodic by part of independent variables, in unbounded domains”, Special Section - Operator Theory, Spectral Theory, Banach Algebras (R-R-2, July 7), Functional Analysis Valencia 2000 (FA VLC 2000) (Spain, Valencia, July 3-7, 2000), Technical University of Valencia (UPV) and University of Valencia (UV), Valencia, Spain, 2000, 85http://www.upv.es/VLC2000/; http://at.yorku.ca/cgi-bin/amca/caey-85
135.
Hovik A. Matevossian, “Elliptic Problems in Conical Domains”, Proceedings of the $XIII^{th}$ International Congress of Mathematical Physics (UK, London, July 17–22, 2000.), Imperial College, London, UK, 2000, 10 pp.
136.
О. А. Матевосян, С. В. Пикулин, Усреднение решений эллиптических операторов с нелинейным поглощением в перфорированных областях, Препринт, М.: МАКС Пресс, Москва, 2000 , 27 с.
137.
Hovik A. Matevossian, “Elliptic operators on symplectic manifolds”, IWOTA–PORTUGAL 2000: Abstracts. International Workshop on Operator Theory and Applications (Portugal, Faro, September 12–15, 2000), Faro, Portugal, 2000, 10 pp.
138.
Hovik A. Matevossian, “On the uniqueness of solutions of the boundary value problem for second order elliptic and parabolic equations, periodic by part of independent variables, in exterior domains”, 4th FAAT; 4th International Conference on Functional Analysis and Approximation Theory (Acquafredda di Maratea (PZ) - September 22–28, 2000), Universita Degli Studi e Politecnico di Bari, Bari, Italia, 2000, 8 pphttp://www.dm.uniba.it/maratea/faat2000.htm
1999
139.
Hovik A. Matevossian, Serguei V. Pikouline, “The homogenization of solutions of elliptic differential operators with weak nonlinearity in perforated domains”, Mathematische Arbeitstagung, (Fourth Arbeitstagung of the Second Series), (Bonn, Germany, June 18–24, 1999), Abstracts Book, Max-Planck-Institut Für Mathematik, Bonn, 1999, 425
140.
О. А. Матевосян, В. В. Трофимов, “Спектральные инварианты дифференциальных операторов на симплектических многообразиях”, Сборник научных трудов "Некоторые комбинаторные задачи геометрии и их компьютерные решения, Министерство общего и профессионального образования РФ. Московский педагогический университет, Депонировано в ВИНИТИ РАН от 14.01.1999, № 28–В99, ВИНИТИ, Москва, 1999, 67–70
141.
Hovik A. Matevossian, “On solutions of elliptic boundary value problems in domains with singularities”, Poster, ICIAM 99; The Fourth International Congress On Industrial and Applied Mathematics, Book of Abstracts (Edinburgh, SCOTLAND, July 5 – 9, 1999), Glasgow G13 1PP, 1999, ppwww.ma.hw.ac.uk/iciam99/
1998
142.
О. А. Матевосян, “О решениях краевых задач для системы теории упругости и бигармонического уравнения в полупространстве”, Дифференц. уравнения, 34:6 (1998), 806–811; O. A. Matevosyan, “On solutions of boundary value problems for a system in the theory of elasticity and for the biharmonic equation in a half-space”, Differ. Equations, 34:6 (1998), 803–808
Hovik A. Matevossian, “On solutions of elliptic boundary value problems in domains with non-compact boundary”, Functional Analysis, Partial Differential Equations, and Applications, Conference in honour of Vladimir G. Mazya (August 31–September 4, 1998, Rostock University, Germany), Universitat Rostock, Rostock, 1998, pp.
144.
Hovik A. Matevossian, “Boundary value problems for the system of elasticity theory in domains with non campact boundary”, PDE Prague' 98: The conerence “Partial Differential Equations – Theory and Numerical Solution” (August 10–16, 1998, Praha, Czech Republic), Charles University of Prague, Praha, 1998, pp.
145.
Hovik A. Matevossian, “On homogenization of solutions of the semilinear second order elliptic operators with nonlinear absorption in perforated domains”, OR '98: International Conference on Operations Research and annual meeting of GOR, OGOR and SIGOPT (ETH Zurich, 31 August – 3 September 1998), Institute for Operations Research ETH Zentrum, CLP, CH–8092 Zurich, 1998, pp.www.or98.ethz.ch/
146.
Hovik A. Matevossian, “On the Scattering of Elastic Waves in a Band. The Limiting Absorption Principle”, Section 10. Partial Differential Equations, ICM'98: International Congress of Mathematicians, Book of Abstracts (Berlin, Germany, August 18–27, 1998), Berlin, 1998, pp.http://elib.zib-berlin.de/ICM98; http://www.mathematik.uni-bielefeld.de/documenta
147.
Hovik A. Matevossian, “On the Hyperbolic Problems”, Book of Abstract: Seventh International Conference on Hyperbolic Problems: Theory, Numerics, Applications (ETH, Zürich, February 9–13, 1998), ETH, Zürich, Switzerland, 1998, pp
1997
148.
Hovik A. Matevossian, “On Solutions of Elliptic Operators in Unbounded Domains”, Equadiff 9: Conference on Differential Equations and their Applications, Abstracts (Brno, Czech Republic, August 25–29, 1997), Masaryk University, Brno, 1997, pp.
1996
149.
Hovik A. Matevossian, “On solutions of elliptic operators in unbounded domains”, Poster, ECM2; 2nd European Congress of Mathemaics. Abstracts Book (Budapest, Hungary, July 21–27, 1996), Budapest, 1996, pp.
1995
150.
Hovik A. Matevosyan, “Elliptic Operators in Unbounded Domains”, Section 11. Partial Differential Equations, Poster, ICM'94: International Congress of Mathematicians, Proceedings of the International Congress of Mathematicians (Zürich, Switzerland, August 3–11, 1994), ISBN 3-7643-5153-5 (Basel); ISBN 0-8176-5153-5 (Boston); 717p., Vol. 1, eds. S. D. Chatterji, Birkhaüser Verlag, Basel, 1995, lviii
151.
Hovik A. Matevossian, The uniqueness theorems of solutions of the boundary vale problems for the system of elasticity theory in unbounded domains, Preprint № 9/29–95, Printed in the CSC “Progress–Engineering”, Moscow, 1995 , 74 pp.
1994
152.
О. А. Матевосян, “О единственности решений краевых задач для системы теории упругости в полупространстве”, УМН, 49:4(298) (1994), 171–172; O. A. Matevosyan, “Uniqueness of solutions of boundary-value problems for a system of elasticity theory in a half-space”, Russ. Math. Surveys, 49:4 (1994), 169–170
О. А. Матевосян, “О единственности решения второй краевой задачи системы теории упругости для неограниченных областей”, Вестник МГУ. Сер. 1. Матем., Мех., 1994, № 6, 71–74; O. A. Matevosyan, “On the uniqueness of the solution of the second boundary value problem for a system in elasticity theory for unbounded domains”, Moscow Univ. Math. Bull., 49:6 (1994), 44–46 (1995)
154.
О. А. Матевосян, “О единственности решения смешанной задачи системы теории упругости для неограниченных областей”, Совместные заседания семинара им. И. Г. Петровского по дифференциальным уравнениям и математическим проблемам физики и Московского математического общества (шестнадцатая сессия, 18–21 января 1994 года), УМН, 49:4(298) (1994), 77–146 (129–130) ; O. A. Matevosyan, “On the uniqueness of the solution of the mixed boundary value problems of elasticity system for unbounded domains”, Joint sessions of the Petrovskii Seminar on Differential Equations and Mathematical Problems of Physics and of the Moscow Mathematical Society (sixteenth session) (Moscow, 18–21 January, 1994), Russ. Math. Surveys, 49:4 (1994), 79–143
О. А. Матевосян, Теоремы единственности решений краевых задач для системы теории упругости и бигармонического уравнения в неограниченных областях, Препринт № 9/28–94M, М.:Изд-во мех-мат факультета МГУ, Москва, 1994 , 100 с., Зак. 1, Тираж 100 экз.
156.
О. А. Матевосян, Теоремы единственности решения задачи Дирихле для системы теории упругости в неограниченных областях, Депонировано в ВИНИТИ РАН, Препринт № 1185-B94. 34 с., 1994
1993
157.
О. А. Матевосян, “О единственности решений первой краевой задачи теории упругости для неограниченных областей”, УМН, 48:6(294) (1993), 159–160; O. A. Matevosyan, “On the uniqueness of solutions of the first boundary value problem in elasticity theory for unbounded domains”, Russ. Math. Surveys, 48:6 (1993), 169–170
On the fourth order nonlinear Helmholtz equation A. Kovalev, О. А. Матевосян III Международная конференция «Математическая физика, динамические системы, бесконечномерный анализ», посвященная 100-летию В.С. Владимирова, 100-летию Л.Д. Кудрявцева и 85-летию О.Г. Смолянова 13 июля 2023 г. 13:10
Elliptic Problems in Weighted Spaces О. А. Матевосян III Международная конференция «Математическая физика, динамические системы, бесконечномерный анализ», посвященная 100-летию В.С. Владимирова, 100-летию Л.Д. Кудрявцева и 85-летию О.Г. Смолянова 13 июля 2023 г. 10:55