01.01.02 (Differential equations, dynamical systems, and optimal control)
Birth date:
5.01.1956
E-mail:
, ,
Keywords:
spectral theory of differential operators; elliptic eigenvalue problems with an indefinite weight function; weighted Sobolev spaces; boundary value problems for linear and nonlinear differential equations and systems; boundary value problems for operator-differential equations; operator theory.
Subject:
Necessary and sufficient and some sufficent conditions ensuring the Riesz basis property are obtained for the eigenfunctions and associated functions of the eigenvalue problems $Lu=\lambda Bu$, $x\in G\subset R^n$, $B_j u|_{\Gamma}=0$, $j=\overline{1,m}$, where $L$ is an elliptic, degenerate elliptic, or quasielliptic operator defined on a domain $G\subset R^n$ with boundary $\Gamma$, $B_j$'s are differential operators defined on $\Gamma$, and $Bu=g(x)u$, with $g(x)$ a measurable function assuming both positive and negative values in $G$. The basisness questions are studied in the weighted Lebesgue space endowed with the norm $\|u\|=\|u |g|^{1/2}\|_{L_{2}(G)}$. Similar results on the Riesz basis property are obtained for eigenelements and associated elements of linear selfadjoint pencils $Lu=\lambda Bu$. The questions of solvability of boundary value problems and qualitative properties of solutions are studied for the first order operator-differential equations $L(t)u=B(t)u_t$, where the operators $B(t):E\to E$ ($E$ is a complex Hilbert space) are symmetric at the interior points of the interval $(0,T)$ and selfadjoint at the points $0,T$, the operators $L(t)$ meet some conditions of the dissipativity type. The question on the interpolation is studied for the weighted Sobolev spaces endowed with the norm $\|u\|_{H_{p,\Psi}^m(\Omega)}^p= \int\limits_{\Omega}\sum\limits_{|\alpha|\le m}\omega_{\alpha}|D^{\alpha}u(x)|^p\,dx$. Here $\Psi=\{\omega_{\alpha}\}_{|\alpha|\le m}$ is a collection of positive continuous functions in $\Omega$. Under some conditions on $\omega_{\alpha}$, the spaces $(H_{p,\Psi}^m(\Omega),L_{p,\omega}(\Omega))_{1-s,p}$ are described ($\omega$ is also positive and continuous).
Biography
Data of birth: January 5, 1956 (Altai region, Russia). 1973–197 — Department of Mathematics, Novosibirsk State University (Novosibirsk).
1978–1980 — Probationer-researcher, Institute of Mathematics of the Siberian Branch of the USSR Academy of Sciences (Novosibirsk).
1982 ã. — Candidate of Physical and Mathematical Sciences (Ph.D.), Institute of Mathematics of the Siberian Branch of the USSR Academy of Sciences (Novosibirsk), Ph.D. Thesis "Well-posed boundary value problems for composite type equations and their generalizations".
1995 — Doctor of Physical and Mathematical Sciences (D.Sc.), Novosibirsk State University (Novosibirsk), D.Sc. Thesis "Indefinite spectral problems and their applications to the theory of boundary value problems of mathematical physics".
2002–present — Ugra State University, the head of the chair of mathematics.
Main publications:
Egorov I. E., Pyatkov S. G., Popov S. V. Neklassicheskie operatorno-differentsialnye uravneniya. Novosibirsk: Nauka, 2000.
Pyatkov S. G. Riesz completeness of the eigenelements and associated elements of linear selfadjoint pencils // Russian Acad. Sci. Sb. Math., v. 81, no. 2, 1995, p. 343–361.
Pyatkov S. G. Interpolation of weighted Sobolev spaces // Sib. Advan. Math., v. 10, no. 4, 2000, p. 83–132.
Pyatkov S. G., Abasheeva N. L. Razreshimost kraevykh zadach dlya operatorno-differentsialnykh uravnenii smeshannogo tipa // Sib. matem. zhurnal, t. 41, # 6, 2000, s. 1419–1435.
Pyatkov S. G. Elliptic eigenvalue problems involving an indefinite weight functions // Sib. Advan. Math., v. 10, no. 4, 2000, p. 134–150.
S. G. Pyatkov, O. A. Soldatov, “Identification of the heat transfer coefficient from boundary integral data”, Sibirsk. Mat. Zh., 65:4 (2024), 709–726
2.
E. I. Safonov, S. G. Pyatkov, “The flux recovering at the ecosystem-atmosphere boundary by inverse modelling”, Vestnik YuUrGU. Ser. Mat. Model. Progr., 17:3 (2024), 29–45
2023
3.
S. G. Pyatkov, V. A. Belonogov, “Recovering of the heat transfer coefficient in transmission problems with imperfect contact conditions”, Chelyab. Fiz.-Mat. Zh., 8:3 (2023), 331–350
4.
S. G. Pyatkov, V. A. Baranchuk, “Determination of the Heat Transfer Coefficient in Mathematical Models of Heat and Mass Transfer”, Mat. Zametki, 113:1 (2023), 90–108; Math. Notes, 113:1 (2023), 93–108
S. G. Pyatkov, O. I. Sokolkov, “On some classes of coefficient inverse problems of recovering thermophysical parameters in stratified media”, Mathematical notes of NEFU, 30:2 (2023), 56–74
6.
S. G. Pyatkov, O. A. Soldatov, “On some classes of inverse parabolic problems of recovering the thermophysical parameters”, Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 15:3 (2023), 23–33
7.
S. N. Shergin, S. G. Pyatkov, “Recovering of the heat transfer coefficient from the temperature measurements”, Vestnik YuUrGU. Ser. Mat. Model. Progr., 16:3 (2023), 51–64
2022
8.
S. G. Pyatkov, V. A. Baranchuk, “Identification of a boundary condition in the heat and mass transfer problems”, Chelyab. Fiz.-Mat. Zh., 7:2 (2022), 234–253
V. A. Belonogov, S. G. Pyatkov, “On some classes of inverse problems of recovering the heat transfer coefficient in stratified media”, Sibirsk. Mat. Zh., 63:2 (2022), 252–271; Siberian Math. J., 63:2 (2022), 206–223
S. G. Pyatkov, L. V. Neustroeva, “On solvability of inverse problems of determining point sources”, Mathematical notes of NEFU, 29:2 (2022), 43–58
12.
S. G. Pyatkov, “Cauchy problem solvability with the data specified on the rectangle boundary for a one-dimensional parabolic equation”, Russian Journal of Cybernetics, 3:2 (2022), 40–46
S. G. Pyatkov, “On inverse problems with pointwise overdetermination for mathematical models of heat and mass transfer”, Vestnik YuUrGU. Ser. Mat. Model. Progr., 15:3 (2022), 34–50
2021
14.
Sergey G. Pyatkov, Vladislav A. Baranchuk, “On some inverse parabolic problems with pointwise overdetermination”, J. Sib. Fed. Univ. Math. Phys., 14:4 (2021), 463–474
V. A. Belonogov, S. G. Pyatkov, “On solvability of some classes of transmission problems in a cylindrical space domain”, Sib. Èlektron. Mat. Izv., 18:1 (2021), 176–206
S. G. Pyatkov, “Boundary value and inverse problems for some classes of nonclassical operator-differential equations”, Sibirsk. Mat. Zh., 62:3 (2021), 603–618; Siberian Math. J., 62:3 (2021), 489–502
S. G. Pyatkov, D. S. Orlova, “On some inverse problems for the Black–Scholes equation”, Mathematical notes of NEFU, 28:3 (2021), 45–69
18.
S. G. Pyatkov, “On evolutionary inverse problems for mathematical models of heat and mass transfer”, Vestnik YuUrGU. Ser. Mat. Model. Progr., 14:1 (2021), 5–25
2020
19.
S. G. Pyatkov, “On some classes of inverse problems on determining source functions for heat and mass transfer systems”, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 188 (2020), 23–42
20.
V. A. Belonogov, S. G. Pyatkov, “On solvability of conjugation problems with non-ideal contact conditions”, Izv. Vyssh. Uchebn. Zaved. Mat., 2020, no. 7, 18–32; Russian Math. (Iz. VUZ), 64:7 (2020), 13–26
S. Z. Djamalov, S. G. Pyatkov, “On some boundary value problems for multidimensional higher order equations of mixed type”, Sibirsk. Mat. Zh., 61:4 (2020), 777–795; Siberian Math. J., 61:4 (2020), 610–625
S. G. Pyatkov, M. V. Uvarova, T. V. Pronkina, “Inverse problems for a quasilinear parabolic system with integral overdetermination conditions”, Mathematical notes of NEFU, 27:4 (2020), 43–59
L. V. Neustroeva, S. G. Pyatkov, “About some classes of reverse tasks on determining the source function”, Mathematical notes of NEFU, 27:1 (2020), 21–40
2019
24.
S. G. Pyatkov, V. V. Rotko, “Inverse problems with pointwise overdetermination for some quasilinear parabolic systems”, Mat. Tr., 22:1 (2019), 178–204; Siberian Adv. Math., 30:2 (2020), 124–142
S. G. Pyatkov, “On Some Classes of Nonlocal Boundary-Value Problems for Singular Parabolic Equations”, Mat. Zametki, 106:4 (2019), 578–594; Math. Notes, 106:4 (2019), 602–615
26.
S. G. Pyatkov, “On some inverse problems for first order operator-differential equations”, Sibirsk. Mat. Zh., 60:1 (2019), 183–193; Siberian Math. J., 60:1 (2019), 140–147
M. V. Uvarova, S. G. Pyatkov, “Some boundary value problems for the Sobolev-type operator-differential equations”, Mathematical notes of NEFU, 26:3 (2019), 71–89
28.
S. N. Shergin, E. I. Safonov, S. G. Pyatkov, “On some inverse coefficient problems with the pointwise overdetermination for mathematical models of filtration”, Vestnik YuUrGU. Ser. Mat. Model. Progr., 12:1 (2019), 82–95
S. Z. Djamalov, S. G. Pyatkov, “Some classes of inverse problems for mixed type equations of second order”, Mathematical notes of NEFU, 25:4 (2018), 3–14
30.
S. G. Pyatkov, E. S. Kvich, “Recovering of lower order coefficients in forward-backward parabolic equations”, Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 10:4 (2018), 23–29
S. G. Pyatkov, M. A. Verzhbitskii, “Inverse problems of recovering the boundary data with integral overdetermination conditions”, Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 10:2 (2018), 37–46
32.
S. G. Pyatkov, S. N. Shergin, “Inverse problems for mathematical models of quasistationary electromagnetic waves in anisotropic nonmetallic media with dispersion”, Vestnik YuUrGU. Ser. Mat. Model. Progr., 11:1 (2018), 44–59
2017
33.
S. G. Pyatkov, V. V. Rotko, “On the source function recovering in quazilinear parabolic problems with pointwise overdetermination conditions”, Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 9:4 (2017), 19–26
S. G. Pyatkov, O. V. Goncharenko, “Parameter identification and control in heat transfer processes”, Vestnik YuUrGU. Ser. Mat. Model. Progr., 10:2 (2017), 51–62
S. G. Pyatkov, E. I. Safonov, “On some classes of inverse problems of recovering a source function”, Mat. Tr., 19:1 (2016), 178–198; Siberian Adv. Math., 27:2 (2017), 119–132
S. G. Pyatkov, M. V. Uvarova, “On determining the source function in heat and mass transfer problems under integral overdetermination conditions”, Sib. Zh. Ind. Mat., 19:4 (2016), 93–100; J. Appl. Industr. Math., 10:4 (2016), 549–555
S. G. Pyatkov, “On some classes of inverse problems with overdetermination data on spatial manifolds”, Sibirsk. Mat. Zh., 57:5 (2016), 1114–1126; Siberian Math. J., 57:5 (2016), 870–880
S. G. Pyatkov, V. V. Rotko, “Recovering a source function in a one-dimensional parabolic equation with dead zones taking into account”, Mathematical notes of NEFU, 23:4 (2016), 46–57
39.
M. A. Verzhbitskii, S. G. Pyatkov, “On some inverse problems of determining boundary regimes”, Mathematical notes of NEFU, 23:2 (2016), 3–18
E. M. Korotkova, S. G. Pyatkov, “On some inverse problems for a linearized system of heat and mass transfer”, Mat. Tr., 17:2 (2014), 142–162; Siberian Adv. Math., 25:2 (2015), 110–123
S. G. Pyatkov, E. I. Safonov, “On some classes of linear inverse problems for parabolic systems of equations”, Sib. Èlektron. Mat. Izv., 11 (2014), 777–799
S. G. Pyatkov, A. G. Borichevskaya, “On an inverse problem for a parabolic equation with the Cauchy data on a part of the lateral boundary of a cylinder”, Sibirsk. Mat. Zh., 54:2 (2013), 436–449; Siberian Math. J., 54:2 (2013), 341–352
46.
S. G. Pyatkov, A. G. Borichevskaya, “Some Inverse Problems for Mathematical Models of Heat and Mass Transfer”, Vestnik YuUrGU. Ser. Mat. Model. Progr., 6:4 (2013), 63–72
S. G. Pyatkov, M. L. Samkov, “On some classes of coefficient inverse problems for parabolic systems of equations”, Mat. Tr., 15:1 (2012), 155–177; Siberian Adv. Math., 22:4 (2012), 287–302
S. G. Pyatkov, “On the existence of maximal semidefinite invariant subspaces for $J$-dissipative operators”, Mat. Sb., 203:2 (2012), 87–110; Sb. Math., 203:2 (2012), 234–256
S. G. Pyatkov, “On some inverse problems for elliptic equations and systems”, Sib. Zh. Ind. Mat., 13:4 (2010), 83–96; J. Appl. Industr. Math., 5:3 (2011), 417–430
S. G. Pyatkov, B. N. Tsybikov, “Some classes of inverse evolution problems for parabolic equations”, Sibirsk. Mat. Zh., 50:1 (2009), 175–189; Siberian Math. J., 50:1 (2009), 141–153
S. G. Pyatkov, “Solvability of a certain boundary value problem for pseudoparabolic equations of the forth order”, Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 5:3 (2005), 43–56
2003
53.
S. G. Pyatkov, “Boundary Value Problems for Some Classes of Singular Parabolic Equations”, Mat. Tr., 6:2 (2003), 144–208; Siberian Adv. Math., 14:3 (2004), 63–125
S. G. Pyatkov, N. L. Abasheieva, “Solvability of boundary value problems for operator-differential equations of mixed type: the degenerate case”, Sibirsk. Mat. Zh., 43:3 (2002), 678–693; Siberian Math. J., 43:3 (2002), 549–561
S. G. Pyatkov, N. L. Abasheieva, “Solvability of boundary value problems for operator-differential equations of mixed type”, Sibirsk. Mat. Zh., 41:6 (2000), 1419–1435; Siberian Math. J., 41:6 (2000), 1174–1187
S. G. Pyatkov, “Riesz completeness of the eigenelements and associated elements of linear selfadjoint pencils”, Mat. Sb., 185:3 (1994), 93–116; Russian Acad. Sci. Sb. Math., 81:2 (1995), 343–361
S. G. Pyatkov, A. G. Podgaev, “On the solvability of a boundary value problem for a nonlinear parabolic equation with changing time direction”, Sibirsk. Mat. Zh., 28:3 (1987), 184–192; Siberian Math. J., 28:3 (1987), 498–505
S. G. Pyatkov, “Solvability of a boundary value problem for a parabolic equation
with changing time direction”, Dokl. Akad. Nauk SSSR, 285:6 (1985), 1327–1329