Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Podgaev, Alexander Grigorievich

Statistics Math-Net.Ru
Total publications: 20
Scientific articles: 20

Number of views:
This page:1370
Abstract pages:3716
Full texts:1634
References:454

https://www.mathnet.ru/eng/person29307
List of publications on Google Scholar
List of publications on ZentralBlatt
https://mathscinet.ams.org/mathscinet/MRAuthorID/227994

Publications in Math-Net.Ru Citations
2024
1. A. G. Podgaev, “A problem with a free boundary for nonlinear equation with a change in the direction of evolution”, Chelyab. Fiz.-Mat. Zh., 9:3 (2024),  407–425  mathnet
2022
2. A. G. Podgaev, “Solvability of an axisymmetric problem for a nonlinear parabolic equation in domains with a non-cylindrical or unknown boundary. II”, Chelyab. Fiz.-Mat. Zh., 7:1 (2022),  43–53  mathnet 1
3. V. Ya. Prudnikov, A. G. Podgaev, “A criterion for the approximation of a semicontinuous functional by Lipschitz functionals”, Dal'nevost. Mat. Zh., 22:1 (2022),  84–90  mathnet  mathscinet
4. A. G. Podgaev, V. Ya. Prudnikov, T. D. Kulesh, “Global three-dimensional solvability the axisimmetric Stefan problem for quasilinear equation”, Dal'nevost. Mat. Zh., 22:1 (2022),  61–75  mathnet  mathscinet
2021
5. A. G. Podgaev, T. D. Kulesh, “Compactness theorems for problems with unknown boundary”, Dal'nevost. Mat. Zh., 21:1 (2021),  105–112  mathnet 1
6. A. G. Podgaev, “Compactness theorems connected with problems with unknown boundary”, Mathematical notes of NEFU, 28:4 (2021),  71–89  mathnet
2020
7. A. G. Podgaev, “Solvability of an axisymmetric problem for nonlinear parabolic equation in domains with a non-cylindrical or unknown boundary. I”, Chelyab. Fiz.-Mat. Zh., 5:1 (2020),  44–55  mathnet 4
2014
8. A. G. Podgaev, N. E. Istomina, “On Faedo–Galerkin methods and monotony in a non-cylindrical domain for a degenerate quasi-linear equation”, Dal'nevost. Mat. Zh., 14:1 (2014),  73–89  mathnet 1
2013
9. A. G. Podgaev, K. V. Lisenkov, “Solvability quasi-linear parabolic equation in domains with picewise monotone boundary”, Dal'nevost. Mat. Zh., 13:2 (2013),  250–272  mathnet 3
2002
10. R. V. Namm, A. G. Podgaev, “On a $W^2_2$ regularity of a solution of semicoercive variational inequalities”, Dal'nevost. Mat. Zh., 3:1 (2002),  210–215  mathnet 5
2000
11. A. G. Podgaev, “Uniqueness theorems for minimization problem of a nondifferentiable functional”, Dal'nevost. Mat. Zh., 1:1 (2000),  28–37  mathnet  elib 5
1999
12. E. G. Agapova, A. G. Podgaev, “Investigation of the solvability of a degenerate evolution equation with a nonhomogeneous nonlinearity by the compactness method”, Differ. Uravn., 35:6 (1999),  772–779  mathnet  mathscinet; Differ. Equ., 35:6 (1999), 773–780 1
1997
13. A. G. Podgaev, “The problem of determining the latent specific heat of fusion from the size of the melting zone”, Dokl. Akad. Nauk, 353:3 (1997),  313–315  mathnet  mathscinet  zmath
1993
14. A. G. Podgaev, “On relative compactness of a set of abstract functions in a scale of Banach spaces”, Sibirsk. Mat. Zh., 34:2 (1993),  135–145  mathnet  mathscinet  zmath; Siberian Math. J., 34:2 (1993), 320–329  isi 7
1987
15. S. G. Pyatkov, A. G. Podgaev, “On the solvability of a boundary value problem for a nonlinear parabolic equation with changing time direction”, Sibirsk. Mat. Zh., 28:3 (1987),  184–192  mathnet  mathscinet  zmath; Siberian Math. J., 28:3 (1987), 498–505  isi 1
16. A. G. Podgaev, “On boundary value problems for some quasilinear nonuniformly parabolic equations with nonclassical degeneracies”, Sibirsk. Mat. Zh., 28:2 (1987),  129–139  mathnet  mathscinet  zmath; Siberian Math. J., 28:2 (1987), 282–291  isi 2
1985
17. A. G. Podgaev, “Compactness of certain nonlinear sets”, Dokl. Akad. Nauk SSSR, 285:5 (1985),  1064–1066  mathnet  mathscinet  zmath 1
1981
18. V. N. Vragov, A. G. Podgaev, “On well-posed problems for some equations of variable type”, Dokl. Akad. Nauk SSSR, 260:2 (1981),  277–280  mathnet  mathscinet  zmath
1978
19. A. G. Podgaev, “The Dirichlet and the Holmgren problem of a multidimensional degenerate equation”, Sibirsk. Mat. Zh., 19:2 (1978),  472–475  mathnet  mathscinet  zmath; Siberian Math. J., 19:2 (1978), 333–336  isi
1977
20. A. G. Podgaev, “On the solvability of the generalized Tricomi problem for a nonlinear equation”, Dokl. Akad. Nauk SSSR, 236:6 (1977),  1307–1310  mathnet  mathscinet  zmath

Organisations
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024