Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Dmitrichev, A S

Statistics Math-Net.Ru
Total publications: 8
Scientific articles: 8

Number of views:
This page:200
Abstract pages:2611
Full texts:1486
References:154

https://www.mathnet.ru/eng/person29412
List of publications on Google Scholar

Publications in Math-Net.Ru Citations
2025
1. V. A. Khramenkov, A. S. Dmitrichev, V. I. Nekorkin, “Multistability of synchronous modes in a multimachine power grid with a common load and their global and non-local stability”, Izvestiya VUZ. Applied Nonlinear Dynamics, 33:1 (2025),  38–68  mathnet
2020
2. A. A. Makeeva, A. S. Dmitrichev, V. I. Nekorkin, “Cycles-canards and torus-canards in a weakly inhomogeneous ensemble of FitzHugh–Nagumo neurons with excitatory synaptic couplings”, Izvestiya VUZ. Applied Nonlinear Dynamics, 28:5 (2020),  524–546  mathnet 1
3. V. A. Khramenkov, A. S. Dmitrichev, V. I. Nekorkin, “Threshold stability of the synchronous mode in a power grid with hub cluster topology”, Izvestiya VUZ. Applied Nonlinear Dynamics, 28:2 (2020),  120–139  mathnet 2
2018
4. A. S. Dmitrichev, D. V. Kasatkin, V. V. Klinshov, S. Yu. Kirillov, O. V. Maslennikov, D. S. Shapin, V. I. Nekorkin, “Nonlinear dynamical models of neurons: Review”, Izvestiya VUZ. Applied Nonlinear Dynamics, 26:4 (2018),  5–58  mathnet  elib 20
5. A. S. Dmitrichev, D. S. Shchapin, V. I. Nekorkin, “Cloning of chimera states in a multiplex network of two-frequency oscillators with linear local couplings”, Pis'ma v Zh. Èksper. Teoret. Fiz., 108:8 (2018),  574–579  mathnet  elib; JETP Letters, 108:8 (2018), 543–547  isi  scopus 6
2017
6. D. S. Shchapin, A. S. Dmitrichev, V. I. Nekorkin, “Chimera states in an ensemble of linearly locally coupled bistable oscillators”, Pis'ma v Zh. Èksper. Teoret. Fiz., 106:9 (2017),  591–596  mathnet  elib; JETP Letters, 106:9 (2017), 617–621  isi  scopus 10
2012
7. V. I. Nekorkin, A. S. Dmitrichev, D. V. Kasatkin, V. S. Afraimovich, “Reducing the sequential dynamics of excitatory neural networks to cellular automata”, Pis'ma v Zh. Èksper. Teoret. Fiz., 95:9 (2012),  557–561  mathnet  elib; JETP Letters, 95:9 (2012), 492–496  isi  elib  scopus 1
2005
8. V. I. Nekorkin, A. S. Dmitrichev, D. S. Shapin, V. B. Kazantsev, “Dynamics of a neuron model with complex-threshold excitation”, Mat. Model., 17:6 (2005),  75–91  mathnet  mathscinet  zmath 8

Organisations
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025