Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Namm, Robert Viktorovich

Statistics Math-Net.Ru
Total publications: 37
Scientific articles: 37

Number of views:
This page:2887
Abstract pages:14026
Full texts:4840
References:1925
Professor
Doctor of physico-mathematical sciences
E-mail: ,

https://www.mathnet.ru/eng/person33560
List of publications on Google Scholar
List of publications on ZentralBlatt
https://mathscinet.ams.org/mathscinet/MRAuthorID/198725
https://elibrary.ru/author_items.asp?authorid=6012
ISTINA https://istina.msu.ru/workers/92557933

Publications in Math-Net.Ru Citations
2023
1. R. V. Namm, G. I. Tsoi, “Duality method for solving 3D contact problems with friction”, Zh. Vychisl. Mat. Mat. Fiz., 63:7 (2023),  1225–1237  mathnet  elib; Comput. Math. Math. Phys., 63:7 (2023), 1350–1361
2019
2. A. Zhiltsov, R. V. Namm, “Stable algorithm for solving the semicoercive problem of contact of two bodies with friction on the boundary”, Dal'nevost. Mat. Zh., 19:2 (2019),  173–184  mathnet 1
3. R. V. Namm, G. I. Tsoi, “Solution of a contact elasticity problem with a rigid inclusion”, Zh. Vychisl. Mat. Mat. Fiz., 59:4 (2019),  699–706  mathnet  elib; Comput. Math. Math. Phys., 59:4 (2019), 659–666  isi  scopus 12
2017
4. E. M. Vikhtenko, G. S. Woo, R. V. Namm, “Modified dual scheme for finite-dimensional and infinite-dimensional convex optimization problems”, Dal'nevost. Mat. Zh., 17:2 (2017),  158–169  mathnet  elib 1
5. R. V. Namm, G. I. Tsoi, “The method of successive approximations for solving quasi-variational Signorini inequality”, Izv. Vyssh. Uchebn. Zaved. Mat., 2017, no. 1,  44–52  mathnet; Russian Math. (Iz. VUZ), 61:1 (2017), 39–46  isi  scopus 3
6. R. V. Namm, G. I. Tsoy, “A modified dual scheme for solving an elastic crack problem”, Sib. Zh. Vychisl. Mat., 20:1 (2017),  47–58  mathnet  mathscinet  elib; Num. Anal. Appl., 10:1 (2017), 37–46  isi  scopus 10
2016
7. E. M. Vikhtenko, R. V. Namm, M. V. Chervyakova, “Duality method for solving model crack problem”, Dal'nevost. Mat. Zh., 16:2 (2016),  137–146  mathnet  elib
8. E. M. Vikhtenko, R. V. Namm, “On the dual method for a model problem with a crack”, Trudy Inst. Mat. i Mekh. UrO RAN, 22:1 (2016),  36–43  mathnet  mathscinet  elib 5
2015
9. A. Zhiltsov, R. V. Namm, “The Lagrange multiplier method in the finite convex programming problem”, Dal'nevost. Mat. Zh., 15:1 (2015),  53–60  mathnet  elib 4
2014
10. E. M. Vikhtenko, G. S. Woo, R. V. Namm, “The methods for solution semi-coercive variational inequalities of mechanics on the basis of modified Lagrangian functionals”, Dal'nevost. Mat. Zh., 14:1 (2014),  6–17  mathnet 7
11. E. M. Vikhtenko, N. N. Maksimova, R. V. Namm, “A sensitivity functionals in variational inequalities of mechanics and their application to duality schemes”, Sib. Zh. Vychisl. Mat., 17:1 (2014),  43–52  mathnet  mathscinet; Num. Anal. Appl., 7:1 (2014), 36–44  scopus 11
12. E. M. Vikhtenko, G. Woo, R. V. Namm, “Sensitivity functionals in contact problems of elasticity theory”, Zh. Vychisl. Mat. Mat. Fiz., 54:7 (2014),  1218–1228  mathnet  mathscinet  zmath  elib; Comput. Math. Math. Phys., 54:7 (2014), 1190–1200  isi  elib  scopus 12
2012
13. E. M. Vikhtenko, N. N. Maksimova, R. V. Namm, “Modified Lagrange functionals to solve the variational and quasivariational inequalities of mechanics”, Avtomat. i Telemekh., 2012, no. 4,  3–17  mathnet; Autom. Remote Control, 73:4 (2012), 605–615  isi  scopus 5
14. N. N. Maksimova (Kushniruk), R. V. Namm, “Finite-element solution of a model mechanical problem with friction based on a smoothing Lagrange multiplier method”, Zh. Vychisl. Mat. Mat. Fiz., 52:1 (2012),  24–34  mathnet  mathscinet  zmath  elib; Comput. Math. Math. Phys., 52:1 (2012), 20–30  isi  elib  scopus 4
2011
15. N. N. Kushniruk, R. V. Namm, “Iterative proximal regularization of a modified Lagrangian functional for solving a semicoercive model problem with friction”, Sib. Zh. Vychisl. Mat., 14:4 (2011),  381–396  mathnet; Num. Anal. Appl., 4:4 (2011), 319–332  scopus 6
16. N. N. Kushniruk, R. V. Namm, A. S. Tkachenko, “Stable smoothing method for solving a model mechanical problem with friction”, Zh. Vychisl. Mat. Mat. Fiz., 51:6 (2011),  1032–1042  mathnet  mathscinet; Comput. Math. Math. Phys., 51:6 (2011), 965–974  isi  scopus 3
2010
17. R. V. Namm, A. S. Tkachenko, “Solution of a semicoercive Signorini problem by a method of iterative proximal regularization of a modified Lagrange functional”, Izv. Vyssh. Uchebn. Zaved. Mat., 2010, no. 4,  36–45  mathnet  mathscinet; Russian Math. (Iz. VUZ), 54:4 (2010), 31–39  scopus 2
18. È. M. Vikhtenko, G. Vu, R. V. Namm, “On the convergence of the Uzawa method with a modified Lagrange functional for variational inequalities in mechanics”, Zh. Vychisl. Mat. Mat. Fiz., 50:8 (2010),  1357–1366  mathnet  mathscinet; Comput. Math. Math. Phys., 50:8 (2010), 1289–1298  isi  scopus 6
2009
19. E. M. Vikhtenko, R. V. Namm, “On a characteristic properties of modified Lagrangian functional in a problem of elasticity with a given friction”, Dal'nevost. Mat. Zh., 9:1-2 (2009),  38–47  mathnet 4
20. H. Kim, R. V. Namm, E. M. Vikhtenko, G. Woo, “Regularization in the Mosolov and Myasnikov problem with boundary friction”, Izv. Vyssh. Uchebn. Zaved. Mat., 2009, no. 6,  10–19  mathnet  mathscinet  zmath; Russian Math. (Iz. VUZ), 53:6 (2009), 7–14 1
21. N. N. Kushniruk, R. V. Namm, “The Lagrange multipliers method for solving a semicoercive model problem with friction”, Sib. Zh. Vychisl. Mat., 12:4 (2009),  409–420  mathnet; Num. Anal. Appl., 2:4 (2009), 330–340  scopus 9
22. R. V. Namm, S. A. Sachkov, “Solving the quasi-variational Signorini inequality by the method of successive approximations”, Zh. Vychisl. Mat. Mat. Fiz., 49:5 (2009),  805–814  mathnet  zmath; Comput. Math. Math. Phys., 49:5 (2009), 776–785  isi  scopus 6
2008
23. N. N. Kushniruk, R. V. Namm, “On a solution of semicoercive model problem with friction”, Dal'nevost. Mat. Zh., 8:2 (2008),  171–179  mathnet 1
24. E. M. Vikhtenko, R. V. Namm, “Iterative proximal regularization of the modified Lagrangian functional for solving the quasi-variational Signorini inequality”, Zh. Vychisl. Mat. Mat. Fiz., 48:9 (2008),  1571–1579  mathnet  mathscinet; Comput. Math. Math. Phys., 48:9 (2008), 1536–1544  isi  scopus 8
2007
25. E. M. Vikhtenko, R. V. Namm, “Duality scheme for solving the semicoercive signorini problem with friction”, Zh. Vychisl. Mat. Mat. Fiz., 47:12 (2007),  2023–2036  mathnet  mathscinet; Comput. Math. Math. Phys., 47:12 (2007), 1938–1951  scopus 26
2006
26. A. Ya. Zolotukhin, R. V. Namm, A. V. Pachina, “On the linear rate of convergence of methods with iterative proximal regularization”, Izv. Vyssh. Uchebn. Zaved. Mat., 2006, no. 12,  44–54  mathnet  mathscinet; Russian Math. (Iz. VUZ), 50:12 (2006), 41–52 1
27. G. S. Woo, S. Kim, R. V. Namm, S. A. Sachkov, “Iterative proximal regularization method for finding a saddle point in the semicoercive Signorini problem”, Zh. Vychisl. Mat. Mat. Fiz., 46:11 (2006),  2024–2031  mathnet  mathscinet; Comput. Math. Math. Phys., 46:11 (2006), 1932–1939  scopus 11
28. G. S. Woo, R. V. Namm, S. A. Sachkov, “An iterative method based on a modified Lagrangian functional for finding a saddle point in the semicoercive Signorini problem”, Zh. Vychisl. Mat. Mat. Fiz., 46:1 (2006),  26–36  mathnet  mathscinet  zmath; Comput. Math. Math. Phys., 46:1 (2006), 23–33  scopus 22
2004
29. E. M. Vikhtenko, R. V. Namm, “A method for solving semi-coercive variational inequalities, based on the method of iterative proximal regularization”, Izv. Vyssh. Uchebn. Zaved. Mat., 2004, no. 1,  31–35  mathnet  mathscinet  zmath; Russian Math. (Iz. VUZ), 48:1 (2004), 28–32 8
2003
30. A. Ya. Zolotukhin, R. V. Namm, A. V. Pachina, “Approximate solution of the semi-coercive Signorini problem with inhomogeneous boundary conditions”, Zh. Vychisl. Mat. Mat. Fiz., 43:3 (2003),  388–398  mathnet  mathscinet  zmath; Comput. Math. Math. Phys., 43:3 (2003), 370–379 2
2002
31. R. V. Namm, A. G. Podgaev, “On a $W^2_2$ regularity of a solution of semicoercive variational inequalities”, Dal'nevost. Mat. Zh., 3:1 (2002),  210–215  mathnet 5
32. R. V. Namm, S. A. Sachkov, “On a stable duality scheme method for solution of the Mosolov and the Miasnikov problem with boundary friction”, Sib. Zh. Vychisl. Mat., 5:4 (2002),  351–365  mathnet  zmath 2
2001
33. R. V. Namm, G. Woo, “On a convergence rate of finite element method in Signorini's problem with nonhomogeneous boundary condition”, Dal'nevost. Mat. Zh., 2:1 (2001),  77–80  mathnet
34. A. Ya. Zolotukhin, R. V. Namm, A. V. Pachina, “An approximate solution of the Mosolov and the Miasnikov variational problem with the Coulomb boundary friction”, Sib. Zh. Vychisl. Mat., 4:2 (2001),  163–177  mathnet  zmath 4
1998
35. R. V. Namm, “On characterization of limit point in the iterative prox-regularization method”, Sib. Zh. Vychisl. Mat., 1:2 (1998),  143–152  mathnet  mathscinet  zmath 1
1995
36. R. V. Namm, “On the rate of convergence of the finite element method in the Signorini problem”, Differ. Uravn., 31:5 (1995),  888–889  mathnet  mathscinet; Differ. Equ., 31:5 (1995), 826–828
1983
37. A. A. Kaplan, R. V. Namm, “On a characteristic of minimizing sequences for the Signorini problem”, Dokl. Akad. Nauk SSSR, 273:4 (1983),  797–800  mathnet  mathscinet  zmath 2

Organisations
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024