Full list of publications: |
|
|
Citations (Crossref Cited-By Service + Math-Net.Ru) |
|
1. |
V. Bobkov, M. Tanaka, “On positive solutions for $(p, q)$-Laplace equations with two parameters”, Calculus of Variations and Partial Differential Equations, 54:3 (2015), 3277–3301 , arXiv: 1411.5192
|
22
[x]
|
2. |
V. Bobkov, M. Tanaka, “Remarks on minimizers for $(p,q)$-Laplace equations with two parameters”, Communications on Pure & Applied Analysis, 17:3 (2018), 1219–1253 , arXiv: 1706.03034
|
12
[x]
|
3. |
V. Bobkov, E. Parini, “On the higher Cheeger problem”, Journal of the London Mathematical Society, 97:3 (2018), 575–600 , arXiv: 1706.07282
|
12
[x]
|
4. |
V. Bobkov, M. Tanaka, “On sign-changing solutions for $(p,q)$-Laplace equations with two parameters”, Advances in Nonlinear Analysis, 8:1 (2019), 101–129 , arXiv: 1606.06092
|
11
[x]
|
5. |
T. V. Anoop, V. Bobkov, S. Sasi, “On the strict monotonicity of the first eigenvalue of the $p$-Laplacian on annuli”, Transactions of the American Mathematical Society, 370 (2018), 7181–7199 , arXiv: 1611.03532
|
10
[x]
|
6. |
V. E. Bobkov, P. Takáč, “A Strong Maximum Principle for parabolic equations with the $p$-Laplacian”, Journal of Mathematical Analysis and Applications, 419:1, 1 November 2014 (2014), 218–230 pdf
|
9
[x]
|
7. |
V. Bobkov, “Least energy nodal solutions for elliptic equations with indefinite nonlinearity”, Electronic Journal of Qualitative Theory of Differential Equations, 2014, no. 56, 1–15 pdf
|
8
[x]
|
8. |
V. Bobkov, Y. Il'yasov, “Maximal existence domains of positive solutions for two-parametric systems of elliptic equations”, Complex Variables and Elliptic Equations, 61:5 (2016), 587–607 , arXiv: 1406.5275
|
7
[x]
|
9. |
V. Bobkov, M. Tanaka, “Multiplicity of positive solutions for $(p,q)$-Laplace equations with two parameters”, Communications in Contemporary Mathematics, 24:3 (2022), 2150008 , 25 pp., arXiv: 2007.11623
|
6
[x]
|
10. |
V. Bobkov, M. Tanaka, “Generalized Picone inequalities and their applications to $(p,q)$-Laplace equations”, Open Mathematics, 18:1 (2020), 1030–1044 , arXiv: 2004.02928
|
6
[x]
|
11. |
V. Bobkov, “Asymptotic relation for zeros of cross-product of Bessel functions and applications”, Journal of Mathematical Analysis and Applications, 472:1 (2019), 1078–1092 , arXiv: 1803.09972
|
6
[x]
|
12. |
V. E. Bobkov, P. Takač, “On maximum and comparison principles for parabolic problems with the $p$-Laplacian”, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 113:2 (2019), 1141–1158 , arXiv: 1803.09562
|
5
[x]
|
13. |
V. Bobkov, M. Tanaka, “On subhomogeneous indefinite $p$-Laplace equations in supercritical spectral interval”, Calculus of Variations and Partial Differential Equations, 62:1 (2023), 22 , 39 pp., arXiv: 2110.11849
|
4
[x]
|
14. |
V. Bobkov, P. Drabek, J. Hernandez, “Existence and multiplicity results for a class of semilinear elliptic equations”, Nonlinear Analysis, 200 (2020), 112017 , 25 pp., arXiv: 2003.08995
|
4
[x]
|
15. |
V. E. Bobkov, “On existence of nodal solution to elliptic equations with convex-concave nonlinearities”, Ufa Math. Journal, 5:2 (2013), 18–30 pdf |
16. |
V. Bobkov, E. Parini, “On the Cheeger problem for rotationally invariant domains”, Manuscripta Mathematica, 166 (2021), 503–522 , arXiv: 1907.10474
|
3
[x]
|
17. |
V. Bobkov, S. Kolonitskii, “On a property of the nodal set of least energy sign-changing solutions for quasilinear elliptic equations”, Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 149:5 (2019), 1163–1173 , arXiv: 1707.02816
|
3
[x]
|
18. |
V. Bobkov, M. Tanaka, “On the Fredholm-type theorems and sign properties of solutions for $(p,q)$-Laplace equations with two parameters”, Annali di Matematica Pura ed Applicata (1923 -), 198:5 (2019), 1651–1673 , arXiv: 1807.07727
|
3
[x]
|
19. |
V. Bobkov, P. Drábek, “On some unexpected properties of radial and symmetric eigenvalues and eigenfunctions of the $p$-Laplacian on a disk”, Journal of Differential Equations, 263:3, 5 August (2017), 1755–1772 , arXiv: 1605.01175
|
3
[x]
|
20. |
V. Bobkov, S. Kolonitskii, “Improved Friedrichs inequality for a subhomogeneous embedding”, Journal of Mathematical Analysis and Applications, 527:1 (2023), 127383 , arXiv: 2210.14111
|
1
[x]
|
21. |
F. Baustian, V. Bobkov, “Basis properties of Fucik eigenfunctions”, Analysis Mathematica, 48:3 (2022), 619–648 , arXiv: 2012.10368
|
1
[x]
|
22. |
T. V. Anoop, V. Bobkov, P. Drabek, “Szegő-Weinberger type inequalities for symmetric domains with holes”, SIAM Journal on Mathematical Analysis, 54:1 (2022), 389–422 , arXiv: 2102.05932
|
1
[x]
|
23. |
J. Benedikt, V. Bobkov, R. N. Dhara, P. Girg, “Nonradiality of second eigenfunctions of the fractional Laplacian in a ball”, Proceedings of the American Mathematical Society, 150:12 (2022), 5335-5348 , arXiv: 2102.08298
|
1
[x]
|
24. |
V. Bobkov, P. Drabek, Y. Ilyasov, “Estimates on the spectral interval of validity of the anti-maximum principle”, Journal of Differential Equations, 269:4 (2020), 2956–2976 , arXiv: 1807.06804
|
1
[x]
|
25. |
F. Baustian, V. Bobkov, “On asymptotic behavior of Dirichlet inverse”, International Journal of Number Theory, 16:6 (2020), 1337–1354 , arXiv: 1903.12445
|
1
[x]
|
26. |
V. Bobkov, S. Kolonitskii, “On qualitative properties of solutions for elliptic problems with the $p$-Laplacian through domain perturbations”, Communications in Partial Differential Equations, 45:3 (2020), 230–252 , arXiv: 1701.07408
|
1
[x]
|
27. |
V. Bobkov, P. Drabek, Y. Ilyasov, “On partially free boundary solutions for elliptic problems with non-Lipschitz nonlinearities”, Applied Mathematics Letters, 95 (2019), 23–28 , arXiv: 1812.08018
|
1
[x]
|
28. |
B. Audoux, V. Bobkov, E. Parini, “On multiplicity of eigenvalues and symmetry of eigenfunctions of the $p$-Laplacian”, Topological Methods in Nonlinear Analysis, 51:2 (2018), 565–582 , arXiv: 1704.03194
|
1
[x]
|
29. |
J. Benedikt, V. Bobkov, R. N. Dhara, P. Girg, “Nonuniqueness for fractional parabolic equations with sublinear power-type nonlinearity”, Journal of Mathematical Analysis and Applications, 2024 , arXiv: 2302.06363 |
30. |
V. Bobkov, M. Tanaka, “Abstract multiplicity results for $(p,q)$-Laplace equations with two parameters”, Rendiconti del Circolo Matematico di Palermo Series 2, 2024 , arXiv: 2308.16581 |
31. |
V. Bobkov, S. Kolonitskii, “Payne nodal set conjecture for the fractional $p$-Laplacian in Steiner symmetric domains”, 2024 (to appear) , arXiv: 2405.06936 |
32. |
V. Bobkov, M. Tanaka, “On the antimaximum principle for the $p$-Laplacian and its sublinear perturbations”, Partial Differential Equations and Applications, 4 (2023), 21 , arXiv: 2210.08898 |
33. |
T. V. Anoop, V. Bobkov, P. Drabek, “Reverse Faber-Krahn and Szego-Weinberger type inequalities for annular domains under Robin-Neumann boundary conditions”, 2023 (to appear) , arXiv: 2309.15558 |
34. |
F. Baustian, V. Bobkov, “Basisness of Fucik eigenfunctions for the Dirichlet Laplacian”, 2021 UNC Greensboro PDE Conference, Electronic Journal of Differential Equations, Conference 26, 2022, 33–43 , arXiv: 2111.08329 |
35. |
F. Baustian, V. Bobkov, “Basis properties of Fučík eigenfunctions for the Neumann Laplacian”, Journal of Mathematical Analysis and Applications, 516:1 (2022), 126466 , arXiv: 2204.06244 |
36. |
V. Bobkov, P. Drabek, Y. Il’yasov, “On full Zakharov equation and its approximations”, Physica D: Nonlinear Phenomena, 401 (2020), 132168 , arXiv: 1801.00803 |
37. |
V. Bobkov, S. Kolonitskii, “Second-order derivative of domain-dependent functionals along Nehari manifold trajectories”, ESAIM: Control, Optimisation and Calculus of Variations, 26 (2020), 48 , 29 pp., arXiv: 1812.05012 |
38. |
V. Bobkov, “On exact Pleijel’s constant for some domains”, Documenta Mathematica, 23 (2018), 799–813 , arXiv: 1802.04357 |
39. |
V. Bobkov, M. Tanaka, “On sign-changing solutions for resonant $(p,q)$-Laplace equations”, Differential Equations & Applications, 20:2 (2018), 197–208 |
40. |
J. Benedikt, V. E. Bobkov, P. Girg, L. Kotrla, P. Takáč, “Nonuniqueness of solutions of initial-value problems for parabolic $p$-Laplacian”, Electronic Journal of Differential Equations, 2015, no. 38, 1–7 pdf |
41. |
V. E. Bobkov, “On the existence of a continuous branch of nodal solutions of elliptic equations with convex-concave nonlinearities”, Differential Equations, 50:6 (2014), 765–776 |
42. |
V. Bobkov, Y. Il'yasov, “Asymptotic behaviour of branches for ground states of elliptic systems”, Electronic Journal of Differential Equations, 2013, no. 212, 1–21 pdf |
|