Видеотека
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления






Optimization at Work
14 апреля 2018 г. 12:00–13:00, Долгопрудный, МФТИ, Главный Корпус, Аудитория 119
 


Implementable tensor methods in unconstrained convex optimization

Ю. Е. Нестеров
Дополнительные материалы:
Adobe PDF 683.9 Kb

Количество просмотров:
Эта страница:253
Материалы:42
Youtube Live:



Аннотация: In this talk we introduce new tensor methods for unconstrained convex optimization, which solve at each iteration an auxiliary problem of minimizing convex multivariate polynomial. We analyze the simplest scheme, based on minimization of a regularized local model of the objective function, and its accelerated version obtained in the framework of estimating sequences. Their rates of convergence are compared with the worst-case lower complexity bounds for corresponding problem classes. Finally, for the third-order methods, we suggest an efficient technique for solving the auxiliary problem, which is based on the recently developed relative smoothness condition. With this elaboration, the third-order methods become implementable and very fast.

Дополнительные материалы: 2_nesterov.pdf (683.9 Kb)
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024