Videolibrary
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
Video Library
Archive
Most viewed videos

Search
RSS
New in collection






The eighth International ñonference "Advances in Modal Logic" (AiML 2010)
August 25, 2010 11:50, Moscow
 


Cut-elimination and proof search for bi-intuitionistic tense logic

Rajeev Goré, Linda Postniece, Alwen Tiu
Video records:
Windows Media 228.8 Mb
Flash Video 383.0 Mb
MP4 239.7 Mb

Number of views:
This page:673
Video files:211

Rajeev Goré, Linda Postniece, Alwen Tiu



Abstract: We consider an extension of bi-intuitionistic logic with the traditional modalities $\lozenge$, $\square$, $\blacklozenge$ and $\blacksquare$ from tense logic Kt. Proof theoretically, this extension is obtained simply by extending an existing sequent calculus for bi-intuitionistic logic with typical inference rules for the modalities used in display logics. As it turns out, the resulting calculus, LBiKt, seems to be more basic than most intuitionistic tense or modal logics considered in the literature, in particular, those studied by Ewald and Simpson, as it does not assume any a priori relationship between the modal operators $\lozenge$ and $\square$. We recover Ewald's intuitionistic tense logic and Simpson's intuitionistic modal logic by modularly extending LBiKt with additional structural rules. The calculus LBiKt is formulated in a variant of display calculus, using a form of sequents called nested sequents. Cut elimination is proved for LBiKt, using a technique similar to that used in display calculi. As in display calculi, the inference rules of LBiKt are “shallow” rules, in the sense that they act on top-level formulae in a nested sequent. The calculus LBiKt is ill-suited for backward proof search due to the presence of certain structural rules called “display postulates” and the contraction rules on arbitrary structures. We show that these structural rules can be made redundant in another calculus, DBiKt, which uses deep inference, allowing one to apply inference rules at an arbitrary depth in a nested sequent. We prove the equivalence between LBiKt and DBiKt and outline a proof search strategy for DBiKt. We also give a Kripke semantics and prove that LBiKt is sound with respect to the semantics, but completeness is still an open problem. We then discuss various extensions of LBiKt.

Language: English
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024