Videolibrary
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
Video Library
Archive
Most viewed videos

Search
RSS
New in collection






Probability Techniques in Analysis and Algorithms on Networks
November 29, 2025 13:05–13:50, Plenary talks, St. Petersburg, St. Petersburg State University, Department of Mathematics and Computer Science (14th Line of Vasilievsky Island, 29b), room 201
 


On a formula for characteristic determinant of a boundary value problem for $n \times n$ Dirac type system

M. M. Malamud

Saint Petersburg State University

Abstract: Consider the following $n \times n$ Dirac type equation:
\begin{equation} \label{eq:Dir-type,eq-n} -i y' - i Q(x) y = \lambda B(x) y, \quad y = {\rm col}(y_1, \ldots, y_n), \quad x \in [0,\ell], \end{equation}
on a finite interval $[0,\ell]$ subject to the general two-point boundary conditions
\begin{equation} \label{eq:BC-s} C y(0) + D y(\ell) = 0, \quad C, D \in \mathbb{C}^{n \times n}, \quad \text{rank} (CC^* + DD^*) =n. \end{equation}
Here $Q = (Q_{jk})_{j,k=1}^n$ is an integrable potential matrix and $B = {\rm diag}(\beta_1, \ldots, \beta_n) = B^*$ is a diagonal integrable matrix “weight”. If $n=2m$ and $B(\cdot) = {\rm diag}(-I_m, I_m)$, this equation turns into the classical $n\times n$ Dirac equation.
In this talk we discuss the spectral properties of the boundary value problems (BVP) \eqref{eq:Dir-type,eq-n}–\eqref{eq:BC-s}. The key role in our investigation is playing the following representation of the characteristic determinant $\Delta_Q(\cdot)$ of the BVP \eqref{eq:Dir-type,eq-n}–\eqref{eq:BC-s}:
\begin{equation} \label{eq:Ch-det-repres-n} \Delta_Q(\lambda) = \Delta_0(\lambda) + \int_{b_-}^{b_+} g(u) e^{i \lambda u} \,du, \quad g \in L^1[b_-, b_+]. \end{equation}
Here $\Delta_0(\cdot)$ is the characteristic determinant of the unperturbed BVP ($Q=0$) and $b_{\pm}$ are explicitly expressed via entries of the matrix function $B(\cdot)$. Formula \eqref{eq:Ch-det-repres-n} is valid under certain assumptions on $\{\beta_k(\cdot)\}_1^n$ and $Q$. In particular, it holds for $B = B^* = const$. In this case the implication $Q \in L^p[b_-, b_+]\otimes \Bbb C^{n\times n} \Longrightarrow g \in L^p[b_-, b_+]$ holds. In the case of $B = {\rm diag}(b_1, b_2) = {\rm const}$ formula \eqref{eq:Ch-det-repres-n} is obtained in [1].
In turn, under certain assumption on $\{\beta_k(\cdot)\}_1^n$ formula \eqref{eq:Ch-det-repres-n} yields asymptotic behavior of the spectrum in the case of regular boundary conditions. Namely, we show that $\lambda_m = \lambda_m^0 + o(1)$ as $m \to \infty$, where $\{\lambda_m\}_{m \in \mathbb{Z}}$ and $\{\lambda_m^0\}_{m \in \mathbb{Z}}$ are sequences of eigenvalues of perturbed and unperturbed BVPs, respectively. It is also shown that for $Q \in L^p$, $p \in (1,2]$, (and constant $B$) the following estimate holds:
$$ \sum_{m \in \mathbb{Z}} |\lambda_m - \lambda_m^0|^{p'} + \sum_{m \in \mathbb{Z}} (1+|m|)^{p-2} |\lambda_m - \lambda_m^0|^{p} < \infty, \quad p' := p/(p-1). $$

The talk is based on a joint paper [2] with Anton Lunyov.

Language: English

References
  1. A. A. Lunyov and M. M. Malamud, “On the Riesz basis property of root vectors system for $2 \times 2$ Dirac type operators”, J. of Math. Anal., Appl., 441 (2016), 57–103
  2. A. A. Lunyov and M. M. Malamud, “On the formula for characteristic determinants of BVP for $n \times n$ Dirac type systems”, Advances in Math., 478 (2025), 110389


* Zoom ID: 675-315-555, Password: mkn
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025