Видеотека
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Видеотека
Архив
Популярное видео

Поиск
RSS
Новые поступления






Transformation groups 2017. Conference dedicated to Prof. Ernest B. Vinberg on the occasion of his 80th birthday
15 декабря 2017 г. 11:00–11:50, г. Москва, Сколковский институт науки и технологий (Сколково, ул. Нобеля, д. 3), к. 303
 


On some modules of covariants for a reflection group

C. De Concini

La Sapienza University, Romе, Italy

Количество просмотров:
Эта страница:109

Аннотация: This is joint work with Paolo Papi. Let $W$ be an irreducible finite reflection group, $\mathfrak{h}$ its (complexified) reflection module. $\mathcal{H} = C[\mathfrak{h}]/I$, where $I$ is the ideal generated by polynomial invariants of positive degree. $A = (\Lambda (\mathfrak{h})\otimes \mathcal{H})^W$ is an exterior algebra and we completely determine the $A$-module structure of $N := hom_W (\mathfrak{h},\Lambda (\mathfrak{h})\otimes \mathcal{H})$.
When $\mathfrak{h}$ is the Cartan subalgebra of a simple Lie algebra $\mathfrak{g}$, it is well known and easy that $A$ is canonically isomorphic to $(\Lambda(\mathfrak{g}))^{\mathfrak{g}}$ and we verify that $N = hom_{\mathfrak{g}}(\mathfrak{g}, \Lambda(\mathfrak{g})$ as an $A$-module.
Finally if $V$ is an irreducible $g$-module whose zero weight space we denote by $V_0$, we construct a degree preserving map
$$hom_{\mathfrak{g}}(V,\Lambda(\mathfrak{g}))\to hom_W (V_0,\Lambda (\mathfrak{h})\otimes \mathcal{H})$$
which we conjecture to be injective. This conjecture implies a well known conjecture by Reeder.

Язык доклада: английский
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2024