Видеотека
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Видеотека
Архив

Поиск
RSS
Новые поступления






Летняя школа «Современная математика» имени Виталия Арнольда, 2018
21 июля 2018 г. 11:15–12:30, г. Дубна, Московская область, г. Дубна, дом отдыха «Ратмино»
 


Числа Каталана: комбинаторика и алгебраическая геометрия, занятие 2

И. В. Лосев

Количество просмотров:
Эта страница:449
Видеофайлы:85

И. В. Лосев



Аннотация: Числа Каталана — важный комбинаторный объект со множеством разных интерпретаций и вариаций. В этих лекциях мы сконцентрируемся на рациональных числах Каталана и их $q$- и $(q,t)$- деформациях. Такие числа параметризуются парой $(a,b)$ взаимно-простых натуральных чисел, случай классических чисел Каталана соответствует $a=n$ и $b=n+1$. Замечательное наблюдение, принадлежащее Марку Хэйману, состоит в том, что классические числа Каталана и их деформации допускают алгебро-геометрическую интерпретацию в терминах геометрии схем Гильберта точек на плоскости. Эта схема Гильберта параметризует идеалы коразмерности $n$ в алгебре многочленов $\mathbb{C}[x,y]$ и очень важна в разных областях математики, включая теорию представлений и теорию узлов. Основная цель этого курса — это объяснить связь между схемой Гильберта и (деформированными) числами Каталана. Необходимые сведения из алгебраической геометрии будут объяснены по ходу дела.

Website: https://www.mccme.ru/dubna/2018/courses/losev.html
Цикл лекций
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2025