Видеотека
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
Видеотека
Архив

Поиск
RSS
Новые поступления






Научная сессия МИАН, посвященная подведению итогов 2018 года
21 ноября 2018 г. 14:30–14:45, г. Москва, конференц-зал МИАН (ул. Губкина, 8)
 


Подграфы случайных графов Кэли

С. В. Конягин, И. Д. Шкредов

Количество просмотров:
Эта страница:729
Видеофайлы:91
Youtube:

С. В. Конягин, И. Д. Шкредов
Фотогалерея



Аннотация: Недавно Мразович показал, что если $G$ — аддитивная группа большого порядка $N$ и $A$ — случайное подмножество группы такое, что элементы группы G независимо друг от друга попадают в $A$ с вероятностью $1/2$, то $A$ с вероятностью, близкой к единице, не содержит суммы больших подмножеств группы. Под большими подмножествами группы имелисьв виду подмножества мощности существенно больше квадрата логарифма от $N$. С. В. Конягин и И. Д. Шкредов усилили этот результат, доказав, что достаточно, чтобы мощности множеств были больше логарифма от $N$, умноженного на некоторые степени повторного логарифма от $N$. Более того, при выполнении этих условий примерно половина сумм элемента первого множества и элемента второго множества принадлежит $A$.

Статьи по теме:
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2025